Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
उत्तर
Let I = `int_0^1 t^5 sqrt(1 - t^2)*dt`
Put t = sin θ
∴ dt = cos θ dθ
When t = 1, θ = sin–11 = `pi/(2)`
When t = 0, θ = sin–10 = 0
∴ I = `int_0^(pi/2) sin^5 theta sqrt(1 - sin^2 theta)cos theta*d theta`
I = `int_0^(pi/2) sin^5 theta*cos theta* cos theta*d theta`
= `int_0^(pi/2) sin^5 theta(1 - sin^2 theta)*d theta`
= `int_0^(pi/2) (sin^5 theta - sin^7 theta)*d theta`
= `int_0^(pi/2) sin^5 theta*d theta - int_0^(pi/2) sin^7 thetad theta`.
Using Reduction formula, we get
I = `4/5*2/3 - 6/7*4/5*2/3`
= `(8)/(15)[1 - 6/7]`
= `(8)/(15) xx (1)/(7)`
= `(8)/(105)`.
APPEARS IN
संबंधित प्रश्न
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Solve the following.
`int_1^3x^2log x dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`