हिंदी

Evaluate the following : ∫01t51-t2⋅dt - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`

योग

उत्तर

Let I = `int_0^1 t^5 sqrt(1 - t^2)*dt`

Put t = sin θ
∴ dt = cos θ dθ

When t = 1, θ = sin–11 = `pi/(2)`

When t = 0, θ = sin–10 = 0

∴ I = `int_0^(pi/2) sin^5 theta sqrt(1 - sin^2 theta)cos theta*d theta`

I = `int_0^(pi/2) sin^5 theta*cos theta* cos theta*d theta`

= `int_0^(pi/2) sin^5 theta(1 - sin^2 theta)*d theta`

= `int_0^(pi/2) (sin^5 theta - sin^7 theta)*d theta`

= `int_0^(pi/2) sin^5 theta*d theta - int_0^(pi/2) sin^7 thetad theta`.
Using Reduction formula, we get

I = `4/5*2/3 - 6/7*4/5*2/3`

= `(8)/(15)[1 - 6/7]`

= `(8)/(15) xx (1)/(7)`

= `(8)/(105)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.05 | पृष्ठ १७६

संबंधित प्रश्न

 Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`


Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`


Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`


Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______


Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


Solve the following : `int_2^3 x/(x^2 - 1)*dx`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x  dx` = k then k = ______.


Solve the following:

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Solve the following.

`int_1^3x^2log x  dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×