हिंदी

Evaluate the following : ∫01(cos-1x2)⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`

योग

उत्तर

Let I = `int_0^1 (cos^-1 x^2)*dx`

Put cos–1x = t
∴ x = cos t
∴ dx = – sin t ·dt

When x = 0, t = cos–10 = `pi/(2)`

When x = 1, t = cos–11 = 0

∴ I = `int_(pi/2)^0 t^2*(- sin t)*dt`

= ` -int_(pi/2)^0 t^2sin t *dt`

= `int_0^(pi/2) t^2 sint*dt         ...[because int_a^b f(x)*dx = -int_b^a f(x)*dx]`

= `[t^2 int sint*dt]_0^(pi/2) - int_0^(pi/2)[d/dx(t^2) int sint*dt]*dt`

= `[t^2 ( cos t)]_0^(pi/2) - int_0^(pi/2) 2t*(- cos t)*dt`

= `[- t^2cos t]_0^(pi/2) + 2int_0^(pi/2) t*cos t*dt`

= `[ - pi/4 cos  pi/2 + 0] + 2{[t int cos t*dt]_0^(pi/2) - int_0^(pi/2)[d/dt (t) int cos t*dt]*dt}`

= `0 + 2{[t sin t]_0^(pi/2) - int_0^(pi/2) 1*sin t*dt}  ...[because cos  pi/2 = 0]`

= `2[t sin t]_0^(pi/2) - 2[(- cos t)]_0^(pi/2)`

= `2[pi/2 sin  pi/2 - 0] - 2[- cos   pi/2 + cos 0]`

= `2[pi/2 xx 1] - 2[- 0 + 1]`

= π – 2.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.06 | पृष्ठ १७६

संबंधित प्रश्न

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Choose the correct alternative :

`int_2^3 x^4*dx` =


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


State whether the following statement is True or False:

`int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Evaluate:

`int_1^2 1/(x^2 + 6x + 5)  dx`


By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Solution: Let I = `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`

∴ x + 3 = A(x + 2) + B.x

∴ A = `square`, B = `square`

∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`

∴ I = `[square log x + square log(x + 2)]_1^2`

∴ I = `square`


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Solve the following `int_1^3 x^2log x dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


Solve the following.

`int_1^3x^2 logx dx`


`int_0^1 1/(2x + 5)dx` = ______


Solve the following.

`int_0^1 e^(x^2) x^3 dx`


Evaluate:

`int_0^1 |x| dx`


Solve the following.

`int_1^3 x^2 log x dx `


`int_a^b f(x) dx = int_a^b f (t) dt`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Solve the following.

`int_1^3 x^2 logxdx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×