Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
उत्तर
Let I = `int_0^1 (cos^-1 x^2)*dx`
Put cos–1x = t
∴ x = cos t
∴ dx = – sin t ·dt
When x = 0, t = cos–10 = `pi/(2)`
When x = 1, t = cos–11 = 0
∴ I = `int_(pi/2)^0 t^2*(- sin t)*dt`
= ` -int_(pi/2)^0 t^2sin t *dt`
= `int_0^(pi/2) t^2 sint*dt ...[because int_a^b f(x)*dx = -int_b^a f(x)*dx]`
= `[t^2 int sint*dt]_0^(pi/2) - int_0^(pi/2)[d/dx(t^2) int sint*dt]*dt`
= `[t^2 ( cos t)]_0^(pi/2) - int_0^(pi/2) 2t*(- cos t)*dt`
= `[- t^2cos t]_0^(pi/2) + 2int_0^(pi/2) t*cos t*dt`
= `[ - pi/4 cos pi/2 + 0] + 2{[t int cos t*dt]_0^(pi/2) - int_0^(pi/2)[d/dt (t) int cos t*dt]*dt}`
= `0 + 2{[t sin t]_0^(pi/2) - int_0^(pi/2) 1*sin t*dt} ...[because cos pi/2 = 0]`
= `2[t sin t]_0^(pi/2) - 2[(- cos t)]_0^(pi/2)`
= `2[pi/2 sin pi/2 - 0] - 2[- cos pi/2 + cos 0]`
= `2[pi/2 xx 1] - 2[- 0 + 1]`
= π – 2.
APPEARS IN
संबंधित प्रश्न
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Choose the correct alternative :
`int_2^3 x^4*dx` =
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Solve the following.
`int_1^3x^2 logx dx`
`int_0^1 1/(2x + 5)dx` = ______
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int_0^1 |x| dx`
Solve the following.
`int_1^3 x^2 log x dx `
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Solve the following.
`int_1^3 x^2 logxdx`