Advertisements
Advertisements
प्रश्न
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
उत्तर
Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x ......(i)
Putting x = – 2 in (i), we get
– 2 + 3 = A(0) + B(– 2)
∴ 1 = – 2B
∴ B = `-1/2`
Putting x = 0 in (i), we get
0 + 3 = A(0 + 2) + B(0)
∴ 3 = 2A
∴ A = `3/2`
∴ A = `3/2`, B = `-1/2`
∴ I = `int_1^2[(3/2)/x + ((-1/2))/(x + 2)] "d"x`
∴ I = `[3/2 log x + -1/2 log (x + 2)]_1^2`
= `3/2 (log 2 - log 1) - 1/2 (log 4 - log 3)`
= `3/2 (log 2 - 0) - 1/2 log (4/3)`
= `1/2 log 2^3 - 1/2 log (4/3)`
= `1/2 (log8 - log 4/3)`
= `1/2 log (8 xx 3/4)`
∴ I = `1/2 log 6`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Fill in the blank : `int_0^2 e^x*dx` = ________
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate the following definite intergral:
`int _1^3logxdx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`