हिंदी

Evaluate: ∫0π2sin2x⋅tan-1(sinx)⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`

योग

उत्तर

Let I = `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`

= `int_0^(pi/2) tan^-1 (sinx)*(2sinx cosx)*dx`

Put sinx  = t

∴ cos x·dx = dt

When x = 0, t = sin 0 = 0

When x = `pi/(2), t = sin  pi/(2)` = 1

∴ I = `int_0^1(tan^-1 t)(2t)*dt`

= `[tan^-1 t int 2t  dt]_0^1 - int_0^1(d/dt (tan^-1 t) int 2t  dt)*dt`

= `[tan^-1 t int (t)^2 ]_0^1 - int_0^1 1/(1 + t^2)*t^2*dt`

= `[t^2 tan^-1  t]_0^1 - int_0^1 ((1 + t^2) - 1)/(1 + t^2)*dt`

= `[1*tan^-1 -  0] -int_0^1 (1 - 1/(1 + t^2))*dt`

= `pi/(4) - [t - tan^-1 t]_0^1`

= `pi/(4) - [(1 - tan^-1 1) - 0]`

= `pi/(4) - 1 + pi/(4)`

= `pi/(2) - 1`

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Exercise 4.2 | Q 2.13 | पृष्ठ १७२

संबंधित प्रश्न

Prove that:

`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`


Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) sn^6x cos^2x*dx` =


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`


Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =


Choose the correct alternative :

`int_2^3 x^4*dx` =


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


Fill in the blank : `int_0^1 dx/(2x + 5)` = _______


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"c""f"(x)  "d"x + int_"c"^"b"  "f"(x)  "d"x`, where a < c < b


Choose the correct alternative:

`int_2^3 x/(x^2 - 1)  "d"x` =


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


State whether the following statement is True or False: 

`int_2^3 x/(x^2 + 1)  "d"x = 1/2 log 2`


Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtxdx`


Evaluate the following definite intergral:

`int_1^3logxdx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Evaluate the following definite intergral:

`int_(1)^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×