हिंदी

Choose the correct alternative: ∫23xx2-1 dx = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative:

`int_2^3 x/(x^2 - 1)  "d"x` =

विकल्प

  • `log (8/3)`

  • `- log (8/3)`

  • `1/2 log(8/3)`

  • `-1/2 log(8/3)`

MCQ

उत्तर

`1/2 log(8/3)`

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.6: Definite Integration - Q.1

संबंधित प्रश्न

 Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`


Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Choose the correct alternative :

`int_2^3 x^4*dx` =


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


Solve the following:

`int_0^1 e^(x^2)*x^3dx`


Solve the following : `int_2^3 x/(x^2 - 1)*dx`


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2))  "d"x`


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Solve the following `int_1^3 x^2log x dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


Solve the following.

`int_1^3 x^2 log x dx `


If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x  dx` = k then k = ______.


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×