हिंदी

Evaluate the following : ∫0a1a2+ax-x2⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`

योग

उत्तर

Let I = `int_0^a 1/(a^2 + ax - x^2)*dx`

a2 + ax – x2 = `a^2 - (x^2 - ax + a^2/4) + a^2/(4)`

= `(5a^2)/(4) - (x - a/2)^2`

= `(sqrt(5a)/2)^2 - (x - a/2)^2`

∴ I = `int_0^a dx/(((sqrt(5)a)/2)^2 - (x - a/2)^2)`

= `(1)/((2 xx sqrt(5)a)/2)*[log|((sqrt(5)a)/2 + x - a/2)/((sqrt(5)a)/(2) - x + a/2)|]_0^a`

= `(1)/(sqrt(5)a)[log|((sqrt(5)a)/2 + a - a/2)/((sqrt(5)a)/(2) - a + a/2)| - log |((sqrt(5)a)/2 - a/2)/((sqrt(5)a)/(2) + a/2)|]`

= `(1)/(sqrt(5)a)[log |(sqrt(5)/2 + 1/2)/(sqrt(5)/2 - 1/2)| - log |(sqrt(5)/2 - 1/2)/(sqrt(5)/2 + 1/2)|]`

= `(1)/(sqrt(5)a)[log|((sqrt(5) + 1)/(sqrt(5) - 1))|- log|((sqrt(5) - 1)/(sqrt(5) + 1))|]`

= `(1)/(sqrt(5)a) log|(sqrt(5) + 1)/(sqrt(5) - 1) xx (sqrt(5) + 1)/(sqrt(5) - 1)|`

= `(1)/(sqrt(5)a) log [((sqrt(5) + 1)/(sqrt(5) - 1))^2]`

= `(1)/(sqrt(5)a) log |(5 + 1 + 2sqrt(5))/(5 + 1  - 2sqrt(5))|`

= `(1)/(sqrt(5)a) log  (6 + 2sqrt(5))/(6 - 2sqrt(5))`

= `(1)/(sqrt(5)a) log|(6 + 2sqrt(5))/(6 - 2sqrt(5)) xx (6 + 2sqrt(5))/(6 + 2sqrt(5))|`

= `(1)/(sqrt(5)a) log|(36 + 20 + 24sqrt(5))/(36 - 20)|`

= `(1)/(sqrt(5)a) log |(56 + 24sqrt(5))/(16)|`

= `(1)/(sqrt(5)a) log|(7 + 3sqrt(5))/(2)|`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Miscellaneous Exercise 4 | Q 3.03 | पृष्ठ १७६

संबंधित प्रश्न

Evaluate:

`int_0^(pi/2) sqrt(cos x) sin^3x * dx`


Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`


Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`


Evaluate the following definite integral:

`int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


Choose the correct alternative :

`int_2^3 x^4*dx` =


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Fill in the blank : `int_2^3 x^4*dx` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


State whether the following statement is True or False: 

`int_2^3 x/(x^2 + 1)  "d"x = 1/2 log 2`


Evaluate:

`int_1^2 1/(x^2 + 6x + 5)  dx`


Evaluate `int_0^"a" x^2 ("a" - x)^(3/2)  "d"x`


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_1^3 logx  dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


The principle solutions of the equation cos θ = `1/2` are ______.


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Solve the following:

`int_1^3 x^2 log x dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtxdx`


Solve the following.

`int_0^1 e^(x^2) x^3  dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Evaluate the following definite intergral:

`int_(-2)^3 1/(x + 5)dx`


Evaluate the following definite intergral:

`int_(1)^3logx  dx`


Solve the following.

`int_1^3x^2log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×