Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
उत्तर
Let I = `int_0^a 1/(a^2 + ax - x^2)*dx`
a2 + ax – x2 = `a^2 - (x^2 - ax + a^2/4) + a^2/(4)`
= `(5a^2)/(4) - (x - a/2)^2`
= `(sqrt(5a)/2)^2 - (x - a/2)^2`
∴ I = `int_0^a dx/(((sqrt(5)a)/2)^2 - (x - a/2)^2)`
= `(1)/((2 xx sqrt(5)a)/2)*[log|((sqrt(5)a)/2 + x - a/2)/((sqrt(5)a)/(2) - x + a/2)|]_0^a`
= `(1)/(sqrt(5)a)[log|((sqrt(5)a)/2 + a - a/2)/((sqrt(5)a)/(2) - a + a/2)| - log |((sqrt(5)a)/2 - a/2)/((sqrt(5)a)/(2) + a/2)|]`
= `(1)/(sqrt(5)a)[log |(sqrt(5)/2 + 1/2)/(sqrt(5)/2 - 1/2)| - log |(sqrt(5)/2 - 1/2)/(sqrt(5)/2 + 1/2)|]`
= `(1)/(sqrt(5)a)[log|((sqrt(5) + 1)/(sqrt(5) - 1))|- log|((sqrt(5) - 1)/(sqrt(5) + 1))|]`
= `(1)/(sqrt(5)a) log|(sqrt(5) + 1)/(sqrt(5) - 1) xx (sqrt(5) + 1)/(sqrt(5) - 1)|`
= `(1)/(sqrt(5)a) log [((sqrt(5) + 1)/(sqrt(5) - 1))^2]`
= `(1)/(sqrt(5)a) log |(5 + 1 + 2sqrt(5))/(5 + 1 - 2sqrt(5))|`
= `(1)/(sqrt(5)a) log (6 + 2sqrt(5))/(6 - 2sqrt(5))`
= `(1)/(sqrt(5)a) log|(6 + 2sqrt(5))/(6 - 2sqrt(5)) xx (6 + 2sqrt(5))/(6 + 2sqrt(5))|`
= `(1)/(sqrt(5)a) log|(36 + 20 + 24sqrt(5))/(36 - 20)|`
= `(1)/(sqrt(5)a) log |(56 + 24sqrt(5))/(16)|`
= `(1)/(sqrt(5)a) log|(7 + 3sqrt(5))/(2)|`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
`int_2^3 x^4*dx` =
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Fill in the blank : `int_2^3 x^4*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
The principle solutions of the equation cos θ = `1/2` are ______.
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Solve the following.
`int_1^3x^2log x dx`