Advertisements
Advertisements
प्रश्न
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
विकल्प
True
False
उत्तर
Here, f(x) = `sqrt(x)`, a = 2, b = 7 False.
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
`int_1^2 x^2 "d"x` = ______
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`