Advertisements
Advertisements
प्रश्न
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
उत्तर
Let I = `int_2^3 x/(x^2 + 1)*dx`
Put x2 + 1 = t
∴ 2x·dx = dt
∴ x·dx = `"dt"/(2)`
When x = 2, t = 22 + 1 = 5
When x = 3, t = 32 + 1 = 10
∴ I = `int_5^10 (1)/"t"*"dt"/(2)`
= `(1)/(2) int_5^10 "dt"/"t"`
= `(1)/(2)[log |"t"|]_5^10`
= `(1)/(2)(log 10 - log 5)`
= `(1)/(2) log (10/5)`
∴ I = `(1)/(2) log 2`
= `log 2^(1/2)`
= `log sqrt(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Choose the correct alternative :
`int_0^2 e^x*dx` =
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`