Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
उत्तर
Let I = `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Put x = sin θ
∴ dx = cos θ dθ
and
`sqrt(1 - x^2) = sqrt(1 - sin^2 theta) = sqrt(cos^2 theta)` = cos θ
When x = 0, sin θ = 0 ∴ θ = 0
When x = 1, sin θ = 1 ∴ θ = `pi/(2)`
∴ I = `int_0^(pi/2) log sin theta *d theta`
Using the property, `int_0^(2a) f(x)*dx = int_0^(a)[f(x) + f(2a - x)]*dx`, we get
I = `int_0^(pi/4) [log sin theta + log sin (pi/2 - theta)]*d theta`
= `int_0^(pi/4) (log sin theta + log cos theta)* d theta`
= `int_0^(pi/4) log sin theta cos theta* d theta`
= `int_0^(pi/4) log((2 sin theta cos theta)/2)*d theta`
= `int_0^(pi/4) (log sin 2 theta - log 2)*d theta`
= `int_0^(pi/4) log sin 2 theta*d theta - int_0^(pi/4) log 2* d theta`
= I1 – I2 ...(Say)
I2 = `int_0^(pi/4) log 2* d theta`
= `log 2 int_0^(pi/4) 1*d theta`
= `log 2 [theta]_0^(pi/4)`
= `(log 2)[pi/4 - 0]`
= `pi/(4) log 2`
I1 = `int_0^(pi/4) log sin 2 theta * d theta`
Put 2θ = t.
Then dθ= `dt/(2)`
When θ = 0, t = 0
When θ = `pi/(4), t = 2(pi/4) = pi/(2)`
∴ I1 = `int_0^(pi/2) log sin t xx dt/(2)`
= `(1)/(2) int_0^(pi/2) log sin theta* d theta`
= `(1)/(2)"I" ...[ because int_a^b f(x)*dx = int_a^b f(t)*dt]`
∴ I = `(1)/(2) "I" - pi/(4)log 2`
∴ `(1)/(2)"I" = - pi/(4) log 2`
∴ I = `- pi/(2) log 2`
= `pi/(2) log (1/2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
`int_0^2 e^x*dx` =
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_1^2 x^2*dx`
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
If `int_0^"a" (2x + 1) "d"x` = 2, find a
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate `int_1^3 log x "d"x`
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`