Advertisements
Advertisements
प्रश्न
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
उत्तर
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
= `int_0^(pi/4) sqrt(sin^2x + cos^2x + 2 sin x cos x)*dx`
= `int_0^(pi/4) sqrt((sinx + cosx)^2)*dx`
= `int_0^(pi/4) (sinx + cosx)*dx`
= `int_0^(pi/4) sinx*dx + int_0^(pi/4) cosx*dx`
= `[ - cos x]_0^(pi/4) + [sin x]_0^(pi/4)`
= `[- cos pi/4 - (- cos 0)] + [sin pi/4 - sin 0]`
= `-(1)/sqrt(2) + 1 + (1)/sqrt(2) - 0`
= 1.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Solve the following : `int_1^2 x^2*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Solve the following.
`int_1^3x^2 logx dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Prove that `int_0^(2a) f(x)dx = int_0^a[f(x) + f(2a - x)]dx`
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Solve the following.
`int_1^3x^2log x dx`