हिंदी

Evaluate : ∫0π4sin4xsin3x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`

योग

उत्तर

`int_0^(pi/4) sin 4x sin 3x *dx`

= `(1)/(2) int_0^(pi/4) 2 sin 4x sin 3x *dx`

= `(1)/(2) int_0^(pi/4) [cos (4x - 3x) - cos(4x + 3x)]*dx`

= `(1)/(2) int_0^(pi/4) cos x*dx - (1)/(2) int^(pi/4)cos 7x*dx`

= `(1)/(2)[sinx]_0^(pi/4) - (1)/(2)[(sin7x)/7]_0^(pi/4)`

= `(1)/(2)[sin  pi/4 - sin 0] - (1)/(14)[sin  (7pi)/4 - sin 0]`

= `(1)/(2)[1/sqrt(2) - 0] - (1)/(14)[sin (2pi - pi/4) - 0]`

= `(1)/(2sqrt(2)) - (1)/(14)(- sin  pi/4)`

= `(1)/(2sqrt(2)) + (1)/(14sqrt(2))`

= `(7 + 1)/(14sqrt(2))`

= `(4)/(7sqrt(2))`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Exercise 4.2 [पृष्ठ १७१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Exercise 4.2 | Q 1.07 | पृष्ठ १७१

संबंधित प्रश्न

Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


`int_2^3 dx/(x(x^3 - 1))` = ______.


`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`


Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`


Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`


Choose the correct alternative :

`int_(-9)^9 x^3/(4 - x^2)*dx` =


Fill in the blank : `int_2^3 x^4*dx` = _______


Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


Solve the following : `int_2^3 x/(x^2 - 1)*dx`


Solve the following : `int_1^2 x^2*dx`


Solve the following : `int_0^1 (1)/(2x - 3)*dx`


`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate:

`int_0^1 |x| dx`


Evaluate the following definite intergral:

`int _1^3logxdx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite integral:

`int_1^3 logx  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite intergral:

`int_1^3logxdx`


Evaluate the following definite intergral:

`int_1^2 (3x)/ ((9x^2 -1)) dx`


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Evaluate the following definite intergral:

`int_(-2)^3 1/(x + 5)dx`


Solve the following.

`int_1^3x^2log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×