Advertisements
Advertisements
प्रश्न
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
उत्तर
`int_0^(pi/4) sin 4x sin 3x *dx`
= `(1)/(2) int_0^(pi/4) 2 sin 4x sin 3x *dx`
= `(1)/(2) int_0^(pi/4) [cos (4x - 3x) - cos(4x + 3x)]*dx`
= `(1)/(2) int_0^(pi/4) cos x*dx - (1)/(2) int^(pi/4)cos 7x*dx`
= `(1)/(2)[sinx]_0^(pi/4) - (1)/(2)[(sin7x)/7]_0^(pi/4)`
= `(1)/(2)[sin pi/4 - sin 0] - (1)/(14)[sin (7pi)/4 - sin 0]`
= `(1)/(2)[1/sqrt(2) - 0] - (1)/(14)[sin (2pi - pi/4) - 0]`
= `(1)/(2sqrt(2)) - (1)/(14)(- sin pi/4)`
= `(1)/(2sqrt(2)) + (1)/(14sqrt(2))`
= `(7 + 1)/(14sqrt(2))`
= `(4)/(7sqrt(2))`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Fill in the blank : `int_2^3 x^4*dx` = _______
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_1^2 x^2*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate:
`int_0^1 |x| dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`
Solve the following.
`int_1^3x^2log x dx`