हिंदी

Evaluate : ∫231x2+5x+6⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`

योग

उत्तर

`int_2^3 (1)/(x^2 + 5x + 6)*dx`

= `int_2^3 (1)/((x + 2)(x + 3))*dx`

= `int_2^3 ((x + 3) - (x + 2))/((x + 2)(x + 3))*dx`

= `int_2^3 [1/(x + 2) - 1/(x + 3)]*dx`

= `[log (x + 2) - log(x + 3)]_2^3`

= `[log |(x + 2)/(x + 3)|]_2^3`

= `log((3 + 2)/(3 + 3)) - log((2 + 2)/(2 + 3))`

= `log  (5)/(6) - log  (4)/(5)`

= `log(5/6 xx 5/4)`

= `log(25/24)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Exercise 4.2 [पृष्ठ १७१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Exercise 4.2 | Q 1.02 | पृष्ठ १७१

संबंधित प्रश्न

Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`


Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate the following:

`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`


Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`


Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`


Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


Solve the following:

`int_1^3 x^2 log x*dx`


Solve the following:

`int_0^1 e^(x^2)*x^3dx`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2))  "d"x`


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Evaluate the following integrals:

`int_-9^9 (x^3)/(4 - x^2) dx`


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Evaluate:

`int_0^1 |x| dx`


If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x  dx` = k then k = ______.


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_(-2)^3 1/(x + 5)dx`


Evaluate the following definite intergral:

`int_(1)^3logx  dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×