हिंदी

Evaluate the following: ∫0πx1+sin2x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`

मूल्यांकन

उत्तर

Let `I = int_0^pi x/(1 + sin^2x) * dx`                     ...(1)

We use the property, `int_0^a f(x) * dx = int_0^a f(a - x) * dx`

Here a = π.

Hence in I, changing x to π – x, we get

`I = int_0^pi (pi - x)/(1 + sin^2(pi - x)) * dx`

= `int_0^pi (pi - x)/(1 + sin^2x) * dx` 

= `int_0^pi pi/(1 + sin^2x) * dx - int_0^(pi) x/(1 + sin^2x) * dx`

= `int_0^(pi) pi/(1 + sin^2x) * dx - I`    ...[By (1)]

∴ `2I = pi int_0^(pi) 1/(1 + sin^2x) * dx`

Dividing numerator and denominator by cos2x, we get

`2I = pi int_0^(pi) (sec^2x)/(sec^2x + tan^2x) * dx`

= `pi int_0^(pi) (sec^2x)/(1 + 2tan^2x) * dx`

Put tan x = t

∴ sec2x dx = dt

When x = π, t = tan π = 0

When x = 0, t = tan 0 = 0

∴ `2I = pi int_0^(0) dt/(1 + 2t^2) = 0`

∴ I = 0    ...`[because int_a^a f(x) * dx = 0]`

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.09 | पृष्ठ १७६

संबंधित प्रश्न

 Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`


Evaluate:

`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`


Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`


Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`


Evaluate the following : `int_0^pi x sin x cos^2x*dx`


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integral:

`int_(-2)^3 (1)/(x + 5)*dx`


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Fill in the blank : `int_2^3 x^4*dx` = _______


Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following : `int_(-4)^(-1) (1)/x*dx`


Solve the following : `int_1^2 dx/(x(1 + logx)^2`


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


State whether the following statement is True or False:

`int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`


Evaluate `int_2^3 x/((x + 2)(x + 3))  "d"x`


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite intergral:

`int_1^3 logx  dx`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


`int_0^4 1/sqrt(4x - x^2)dx` = ______.


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve the following:

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5).dx`


Evaluate the following definite intergral:

`int_(-2)^3 1/(x + 5)dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Evaluate the following definite intergral:

`int_(1)^3logx  dx`


Solve the following.

`int_1^3x^2 logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×