Advertisements
Advertisements
प्रश्न
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
उत्तर
Let I = `int_1^2 dx/(x(1 + logx)^2`
Put 1 + log x = t
∴ `(1)/x*dx` = dt
When x = 1, t = 1 + log 1
= 1 + 0 = 1
When x = 2, t = 1 + log 2
∴ I = `int_1^(1 + log2) "dt"/"t"^2`
= `[- 1/"t"]_1^(1 + log 2)`
= `-(1/(1 + log 2) - 1)`
= `-((1 - 1 - log 2)/(1 + log 2))`
∴ I = `log2/(1 + log2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
`int_1^2 x^2 "d"x` = ______
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Prove that `int_0^(2a) f(x)dx = int_0^a[f(x) + f(2a - x)]dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Solve the following.
`int_1^3x^2log x dx`