हिंदी

Evaluate : ∫012sin-1x(1-x2)32⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`

योग

उत्तर

Let I = `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`

= `int_0^(1/sqrt(2)) (sin^-1x)/((1 - x^2)sqrt(1 - x^2))*dx`

Put sin–1 x = t

∴ `(1)/sqrt(1 - x^2)*dx` = dt
Also, x = sin t

When x = `(1)/sqrt(2), t = sin^-1 (1/sqrt(2)) = pi/(4)`

When x = 0, t = sin–10 = 0

∴ I = `int_0^(pi/4) t/(1 - sin^2t)*dt`

= `int_0^(pi/4) t/(cos^2t)*dt`

= `int_0^(pi/4) t sec^2t*dt`

= `[t int sec^2t*dt]_0^(pi/4) - int_0^(pi/4)[d/dt (t) int sec^2t*dt]*dt`

= `[t tant]_0^(p/4) - int_0^(pi/4) 1*tant*dt`

= `[pi/4 tan  pi/4 - 0] -[log |sect|]_0^(pi/4)`

= `pi/(4) - [log(sec  pi/4) - log (sec 0)]`

= `pi/(4) - [log sqrt(2) - log 1]`

= `pi/(4) - (1)/(2)log2`.                       ...[∵ log 1 = 0]

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Exercise 4.2 | Q 2.01 | पृष्ठ १७२

संबंधित प्रश्न

Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`


Evaluate the following:

`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


Evaluate the following : `int_0^pi x sin x cos^2x*dx`


Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Choose the correct option from the given alternatives :

The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


Fill in the blank : `int_2^3 x^4*dx` = _______


Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______


Solve the following : `int_4^9 (1)/sqrt(x)*dx`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


`int_1^2 x^2  "d"x` = ______


State whether the following statement is True or False: 

`int_2^3 x/(x^2 + 1)  "d"x = 1/2 log 2`


Evaluate `int_1^3 log x  "d"x`


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


Evaluate the following definite integral:

`int_1^3 log x  dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Solve the following.

`int_0^1 e^(x^2) x^3 dx`


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Solve the following.

`int_1^3 x^2 log x dx `


If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x  dx` = k then k = ______.


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the integral.

`int_-9^9 x^3/(4-x^2) dx`


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×