हिंदी

Evaluate : ∫0π4sec2x3tan2x+4tanx+1⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`

योग

उत्तर

Let I = `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`

Put tan x = t
∴ sec2x·dx = dt
When x = 0, t = tan 0 = 0

When x = `pi/(4), t = tan  pi/(4)` = 1

∴ I = `int_0^1 dt/(3t^2 + 4t + 1)`

= `(1)/(3) int_0^1 dt/(t^2 + 4/3t + 1/3)`

= `(1)/(3) int_0^1 dt/(t^2 + (4t)/(3) + (4)/(9) - (4)/(9) + (1)/(3)`

= `dt/((t + 2/3)2 - (1/3)^2`

= `(1)/(3)(1)/(2(1/3))[log |(t + 2/3 - 1/3)/(t + 2/3 + 1/3)|]_0^1`

= `(1)/(2)[log ((1 + 1/3)/(1 + 1)) - log((0 + 1/3)/(0 + 1))]`

= `(1)/(2)[log (2/3) - log(1/3)`

= `(1)/(2)log2`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Exercise 4.2 | Q 2.02 | पृष्ठ १७२

संबंधित प्रश्न

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


Choose the correct alternative:

`int_2^3 x/(x^2 - 1)  "d"x` =


`int_1^2 x^2  "d"x` = ______


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Solution: Let I = `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`

∴ x + 3 = A(x + 2) + B.x

∴ A = `square`, B = `square`

∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`

∴ I = `[square log x + square log(x + 2)]_1^2`

∴ I = `square`


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5dx`


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Evaluate:

`int_0^1 |x| dx`


If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x  dx` = k then k = ______.


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the integral.

`int_-9^9 x^3/(4-x^2) dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5).dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×