Advertisements
Advertisements
प्रश्न
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
उत्तर
Let I = `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Put tan x = t
∴ sec2x·dx = dt
When x = 0, t = tan 0 = 0
When x = `pi/(4), t = tan pi/(4)` = 1
∴ I = `int_0^1 dt/(3t^2 + 4t + 1)`
= `(1)/(3) int_0^1 dt/(t^2 + 4/3t + 1/3)`
= `(1)/(3) int_0^1 dt/(t^2 + (4t)/(3) + (4)/(9) - (4)/(9) + (1)/(3)`
= `dt/((t + 2/3)2 - (1/3)^2`
= `(1)/(3)(1)/(2(1/3))[log |(t + 2/3 - 1/3)/(t + 2/3 + 1/3)|]_0^1`
= `(1)/(2)[log ((1 + 1/3)/(1 + 1)) - log((0 + 1/3)/(0 + 1))]`
= `(1)/(2)[log (2/3) - log(1/3)`
= `(1)/(2)log2`.
APPEARS IN
संबंधित प्रश्न
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_2^3 x^4*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Solve the following.
`int_1^3x^2 logx dx`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Solve the following.
`int_1^3 x^2 log x dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Solve the following.
`int_1^3 x^2 log x dx`