Advertisements
Advertisements
प्रश्न
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
पर्याय
1
2
4
0
उत्तर
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = 0.
Explanation:
Let I = `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Let f(x) = `x^3 sin^4x`
∴ f( –x) = `(-x)^3 sin^4(- x)`
= `-x^3sin^4x`
= `-f(x)`
∴ f is an odd function.
∴ `int_((-pi)/4)^(pi/4) f(x)*dx = 0`,
i.e. `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx = 0` ...(Property of def integration)
⇒ k = 0
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 logxdx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Solve the following.
`int_1^3x^2log x dx`