मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate: ∫0113+2x-x2⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate:

`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`

बेरीज

उत्तर

`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`

= `int_0^1 (1)/sqrt(3 - (x^2 - 2x + 1) + 1)*dx`

= `int_0^1 (1)/sqrt((2)^2 - (x - 1)^2)*dx`

= `[sin^-1 ((x - 1)/2)]_0^1`

= `sin^-1(0) - sin^-1(-1/2)`

= `0 - sin^-1 (-sin  pi/6)`

= `-sin^-1[sin(- pi/6)]`

= `-(- pi/6)`

= `pi/(6)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Exercise 4.2 [पृष्ठ १७१]

APPEARS IN

संबंधित प्रश्‍न

Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_(-2)^(3) |x - 2|*dx`


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Choose the correct alternative :

`int_0^2 e^x*dx` =


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`


Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`


Solve the following : `int_2^4 x/(x^2 + 1)*dx`


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Solution: Let I = `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`

∴ x + 3 = A(x + 2) + B.x

∴ A = `square`, B = `square`

∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`

∴ I = `[square log x + square log(x + 2)]_1^2`

∴ I = `square`


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Solve the following.

`int_1^3 x^2 log x dx `


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite integral:

`int_1^3 logx  dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Solve the following.

`int_1^3x^2 logx  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5).dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×