Advertisements
Advertisements
प्रश्न
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
उत्तर
Let I = `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Put 1 + log x = t
∴ `1/x "d"x` = dt
When x = 1, t = 1 + log 1 = 1 + 0 = 1
When x = e, t = 1 + log e = 1 + 1 = 2
∴ I = `int_1^2 "dt"/"t"^2`
= `int_1^2 "t"^(-2) "dt"`
= `[("t"^(-1))/(-1)]_1^2`
= `-[1/"t"]_1^2`
= `-(1/2 - 1)`
∴ I = `-((-1)/2)`
= `1/2`
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Solve the following.
`int_1^3 x^2 log x dx `
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`
Solve the following.
`int_1^3 x^2 logxdx`