Advertisements
Advertisements
प्रश्न
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
उत्तर
Let I = `int_1^2 (3x)/((9x^2 - 1)) "d"x`
= `3int_1^2 x/(9x^2 - 1) "d"x`
Put 9x2 – 1 = t
∴ 18x dx = dt
∴ x dx = `1/18` dt
When x = 1, t = 9(1)2 – 1 = 8
When x = 2, t = 9(2)2 – 1 = 35
∴ I = `3int_8^35 1/"t"*"dt"/18`
= `1/6 int_8^35 "dt"/"t"`
= `1/6[log|"t"|]_8^35`
= `1/6(log 35 - log 8)`
∴ I = `1/6 log (35/8)`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Evaluate the following definite intergral:
`int_1^3 log xdx`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Solve the following.
`int_1^3x^2log x dx`