Advertisements
Advertisements
प्रश्न
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
उत्तर
Let I = `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
= `int_3^5 (1)/(sqrt(x + 4) + sqrt(x - 2)) xx (sqrt(x + 4) - sqrt(x - 2))/(sqrt(x + 4) - sqrt(x - 2))*dx`
= `int_3^5 (sqrt(x + 4) - sqrt(x - 2))/((sqrt(x + 4))^2 - (sqrt(x - 2))^2)*dx`
= `int_3^5 (sqrt(x + 4) - sqrt(x - 2))/(x + 4 - (x - 2))*dx`
= `int_3^5 (sqrt(x + 4) - sqrt(x - 2))/(6)*dx`
= `(1)/(6) int_3^5 (x + 4)^(1/2)*dx - (1)/(6) int_3^5 (x - 2)^(1/2)*dx`
= `(1)/(6) [((x + 4)^(3/2))/(3/2)]_3^5 - (1)/(6)[((x - 2)^(3/2))/(3/2)]_3^5`
= `(1)/(9)[(9)^(3/2) - (7)^(3/2)] - (1)/(9) [(3)^(3/2) - (1)^(3/2)]`
= `(1)/(9) (27 - 7sqrt(7)) - (1)/(9) (3sqrt(3) - 1)`
= `(1)/(9)(27 - 7sqrt(7) - 3sqrt(3) + 1)`
∴ I = `(1)/(9)(28 - 3sqrt(3) - 7sqrt(7))`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Solve the following.
`int_1^3 x^2 log x dx `
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`