Advertisements
Advertisements
प्रश्न
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
उत्तर
Let I = `int_2^3 x/((x + 2)(x + 3)) "d"x`
Let `x/((x + 2) x + 3) = "A"/(x + 2) + "B"/(x + 3)` .....(i)
∴ x = A(x + 3) + B(x + 2) ......(ii)
Putting x = – 3 in (ii), we get
– 3 = – B
∴ B = 3
Putting x = – 2 in (ii), we get
– 2 = A
∴ A = – 2
From (i), we get
`x/((x + 2)(x + 3)) = (-2)/(x + 2) + 3/(x + 3)`
∴ I = `int_2^3[(-2)/(x + 2) + 3/(x + 3)] "d"x`
= `-2 int_2^3 1/(x + 2) "d"x + 3 int_2^3 1/(x + 3) "d"x`
= `-2[log|x + 2|]_2^3 + 3[log|x + 3|]_2^3`
= – 2(log 5 – log 4) + 3(log 6 – log 5)
= `- 2 log(5/4) + 3 log(6/5)`
= `3 log(6/5) - 2log(5/4)`
= `log (6/5)^3 - log(5/4)^2`
= `log(216/125) - log(25/16)`
= `log(216/125 xx 16/25)`
∴ I = `log(3456/3125)`
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`