Advertisements
Advertisements
प्रश्न
Evaluate : `int_1^3 (cos(logx))/x*dx`
उत्तर
Let I = `int_1^3 (cos(logx))/x*dx`
= `int_1^3 cos(logx)*1/x*dx`
Put log x = t
∴ `(1)/x*dx` = dt
When x = 1, t = log 1 = 0
When x = 3, t = log 3
∴ I = `int_0^log3 cos t *dt = [sint]_0^log3`
= sin (log 3) - sin 0
= sin (log 3).
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Fill in the blank : `int_2^3 x^4*dx` = _______
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_1^2 x^2*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
`int_1^2 x^2 "d"x` = ______
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve the following.
`int_1^3 x^2 log x dx `
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`
Solve the following.
`int_1^3x^2log x dx`