Advertisements
Advertisements
प्रश्न
Evaluate : `int_1^3 (cos(logx))/x*dx`
उत्तर
Let I = `int_1^3 (cos(logx))/x*dx`
= `int_1^3 cos(logx)*1/x*dx`
Put log x = t
∴ `(1)/x*dx` = dt
When x = 1, t = log 1 = 0
When x = 3, t = log 3
∴ I = `int_0^log3 cos t *dt = [sint]_0^log3`
= sin (log 3) - sin 0
= sin (log 3).
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
If `int_0^"a" (2x + 1) "d"x` = 2, find a
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Solve the following.
`int_1^3x^2 logx dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate:
`int_0^1 |x| dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
The principle solutions of the equation cos θ = `1/2` are ______.
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`