हिंदी

Evaluate the following: ∫0a1x+a2-x2.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`

योग

उत्तर

Let I = `int_0^a (1)/(x + sqrt(a^2 - x^2))*dx`

Put x = a sin θ

∴ dx = a cos θ dθ

and `sqrt(a^2 - x^2)` = `sqrt(a^1 - a^2 sin^2theta)`

= `sqrt(a^2(1 - sin^2theta)`

= `sqrt(a^2 cos^2theta)`

= a cos θ

When x = 0, a sin θ = 0     

∴ θ = 0

When x – a, a sin θ = a     

∴ θ = `pi/(2)`

∴ I = `int_0^(pi/2) (a cos theta d theta)/(a sin theta + a cos  theta)`

∴ I = `int_0^(pi/2) (cos theta)/(sin theta + cos theta).d theta`            ...(1)

We use the property, ` int_0^a f(a - x).dx`,

Hence in I, we change θ by `[(pi/2) - theta]`

∴ I = `int_0^(pi/2) (cos[(pi/2) - theta])/(sin [(pi/2) - theta] + cos [(pi/2) - theta]).d theta`

= `int_0^(pi/2) sin theta/(cos theta + sin theta).d theta`    ...(2)

Adding (1) and (2), we get

2I = `int_0^(pi/2) cos theta/(sin theta + cos theta).d theta + int_0^(pi/2) sin theta/(cos theta + sin theta).d theta`

= `int_0^(pi/2) (cos theta + sin theta)/(cos theta + sin theta).d theta`

= `int_0^(pi/2) 1.d theta = [theta]_0^(pi/2)`

= `(pi/2) - 0` = `pi/(2)`

∴ I = `pi/(4)`.

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Exercise 4.2 | Q 3.01 | पृष्ठ १७२

संबंधित प्रश्न

Evaluate: `int_0^(π/4) cot^2x.dx`


Evaluate: `int_0^(pi/2) x sin x.dx`


Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.


Let I1 = `int_"e"^("e"^2)  1/logx  "d"x` and I2 = `int_1^2 ("e"^x)/x  "d"x` then 


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`


Evaluate: `int_0^1 1/(1 + x^2)  "d"x`


Evaluate: `int_0^(pi/4) sec^2 x  "d"x`


Evaluate: `int_0^1 |x|  "d"x`


Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1)  "d"x`


Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x)  "d"x`


Evaluate: `int_0^(pi/2) cos^3x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_0^(pi/4)  cosx/(4 - sin^2 x)  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`


Evaluate: `int_(-1)^1 |5x - 3|  "d"x`


Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13)  "d"x`


Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2)  "d"x`


Evaluate: `int_0^1 x* tan^-1x  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2)  "d"x`


Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2))  "d"x`


Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`


Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`


If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.


Evaluate:

`int_(π/4)^(π/2) cot^2x  dx`.


Evaluate:

`int_0^(π/2) sin^8x  dx`


The value of `int_2^(π/2) sin^3x  dx` = ______.


Evaluate:

`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`


Evaluate:

`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`


Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`


Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×