हिंदी

Evaluate: π∫0πsin3x(1+2cosx)(1+cosx)2.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`

योग

उत्तर

Let I = `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`

= `int_0^π sin^2x(1 + 2 cosx)(1 + cosx)^2.sinx.dx`

= `int_0^π (1 - cos^2x)(1 +  2cosx)(1 + cosx)^2.sinx.dx`

Put cos x = t

∴ – sinx.dx = dt.

∴ sinx.dx = –dt

When x = 0, t = cos 0 = 1

When x = π, t = cos π = –1

∴ I = `int_1^(-1) (1 - t^2)(1 + 2t)(1 + t)^2(- dt)`

= `-int_1^(-1)(1 + 2t - t^2 - 2t^3)(1 + 2t + t^2).dt`

= `- int_1^(-1) (1 + 2t - t^2 - 2t^3 + 2t + 4t^2 - 2t^3 - 4t^4 + t^2 + 2t^3 - t^4 - 2t^5).dt`

= `int_1^(-1) (1 + 4t + 4t^2 - 2t^3 - 5t^4 - 2t^5).dt`

= `-[t + 4(t^2/2) + 4(t^3/3) - 2(t^4/4) - 5(t^5/5) - 2(t^6/6)]_1^(-1)`

= `-[t + 2t^2  4/3t^3 - 1/2t^4 - t^5 - 1/3t^6]_1^(-1)`

= `-[(-1 + 2 - 4/3 - 1/2 + 1 - 1/3) - (1 + 2 + 4/3 - 1/2 - 1 - 1/3)]`

= `-[-1 + 2 - 4/3 - 1/2 + 1 - 1/3 - 1 - 2 - 4/3 + 1/2 + 1 + 1/3]`

= `-[-8/3]`

= `(8)/(3)`.

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

संबंधित प्रश्न

Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`


Evaluate: `int_0^oo xe^-x.dx`


Evaluate the following:

`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`


`int_0^(x/4) sqrt(1 + sin 2x)  "d"x` =


`int_(pi/5)^((3pi)/10)  sinx/(sinx + cosx)  "d"x` =


Evaluate: `int_(pi/6)^(pi/3) cosx  "d"x`


Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`


Evaluate: `int_0^1 1/(1 + x^2)  "d"x`


Evaluate: `int_0^(pi/4) sec^2 x  "d"x`


Evaluate: `int_1^2 x/(1 + x^2)  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_0^(pi/4)  cosx/(4 - sin^2 x)  "d"x`


Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`


Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`


Evaluate: `int_(-1)^1 |5x - 3|  "d"x`


Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13)  "d"x`


Evaluate: `int_0^1 x* tan^-1x  "d"x`


Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)  "d"x`


Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx))  "d"x`


Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x))  "d"x`


Evaluate: `int_0^3 x^2 (3 - x)^(5/2)  "d"x`


Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`


Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2)  "d"x`


Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2))  "d"x`


Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`


Evaluate: `int_0^(π/4) sec^4 x  dx`


`int_0^(π/2) sin^6x cos^2x.dx` = ______.


Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.


Evaluate:

`int_0^(π/2) sin^8x  dx`


Evaluate:

`int_-4^5 |x + 3|dx`


Evaluate:

`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`


Evaluate:

`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`


`int_0^1 x^2/(1 + x^2)dx` = ______.


Evaluate:

`int_0^(π/2) sinx/(1 + cosx)^3 dx`


Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`


Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`


If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×