हिंदी

Evaluate: ∫0π4 sec2x3tan2x+4tanx+1 dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`

योग

उत्तर

Let I = `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`

Put tan x = t

∴ sec2x dx = dt

When x = 0, t = 0 and when x = `pi/4`, t = 1

∴ I = `int_0^1  "dt"/(3"t"^2 + 4"t" + 1)`

= `1/3 int_0^1  "dt"/("t"^2 + (4"t")/3 + 1/3)`

= `1/3 int_0^1  "dt"/("t"^2 + 2((2"t")/3) + (2/3)^2 - (2/3)^2 + 1/3)`

= `1/3 int_0^1  "dt"/(("t" + 2/3)^2 + ((-4 + 3)/9))`

= `1/3 int_0^1  "dt"/(("t" + 2/3)^2 - (1/3)^2`

= `1/3[1/(2 xx 1/3) log|(("t" + 2/3) - 1/3)/(("t" + 2/3) + 1/3)|]_0^1`

= `1/2[log|(3"t" + 1)/(3"t" + 3)|]_0^1`

= `1/2[log(4/6) - log(1/3)]`

= `1/2 log(4/6 xx 3)`

∴ I = `1/2 log 2`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.4: Definite Integration - Long Answers III

संबंधित प्रश्न

Evaluate: `int_0^(π/4) cot^2x.dx`


Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`


Evaluate: `int_0^(pi/2) x sin x.dx`


Evaluate: `int_0^oo xe^-x.dx`


Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`


Evaluate the following:

`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`


If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.


`int_(pi/5)^((3pi)/10)  sinx/(sinx + cosx)  "d"x` =


`int_0^1 (x^2 - 2)/(x^2 + 1)  "d"x` =


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


Evaluate: `int_(pi/6)^(pi/3) cosx  "d"x`


Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`


Evaluate: `int_0^1 |x|  "d"x`


Evaluate: `int_0^1 1/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_0^(pi/2) cos^3x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`


Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x)  "d"x`


Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2)  "d"x`


Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13)  "d"x`


Evaluate: `int_0^(pi/4) sec^4x  "d"x`


Evaluate: `int_0^(pi/2) 1/(5 + 4cos x)  "d"x`


Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx))  "d"x`


Evaluate: `int_0^3 x^2 (3 - x)^(5/2)  "d"x`


Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2))  "d"x`


Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`


Evaluate:

`int_(π/4)^(π/2) cot^2x  dx`.


Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.


Evaluate:

`int_0^(π/2) sin^8x  dx`


Evaluate:

`int_(-π/2)^(π/2) |sinx|dx`


Evaluate `int_(π/6)^(π/3) cos^2x  dx`


Evaluate:

`int_-4^5 |x + 3|dx`


The value of `int_2^(π/2) sin^3x  dx` = ______.


Evaluate:

`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`


Evaluate:

`int_0^(π/2) sinx/(1 + cosx)^3 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×