Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
उत्तर
Let I = `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Put tan x = t
∴ sec2x dx = dt
When x = 0, t = 0 and when x = `pi/4`, t = 1
∴ I = `int_0^1 "dt"/(3"t"^2 + 4"t" + 1)`
= `1/3 int_0^1 "dt"/("t"^2 + (4"t")/3 + 1/3)`
= `1/3 int_0^1 "dt"/("t"^2 + 2((2"t")/3) + (2/3)^2 - (2/3)^2 + 1/3)`
= `1/3 int_0^1 "dt"/(("t" + 2/3)^2 + ((-4 + 3)/9))`
= `1/3 int_0^1 "dt"/(("t" + 2/3)^2 - (1/3)^2`
= `1/3[1/(2 xx 1/3) log|(("t" + 2/3) - 1/3)/(("t" + 2/3) + 1/3)|]_0^1`
= `1/2[log|(3"t" + 1)/(3"t" + 3)|]_0^1`
= `1/2[log(4/6) - log(1/3)]`
= `1/2 log(4/6 xx 3)`
∴ I = `1/2 log 2`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^(pi/2) x sin x.dx`
Evaluate: `int_0^oo xe^-x.dx`
Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
`int_0^(x/4) sqrt(1 + sin 2x) "d"x` =
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
`int_0^4 1/sqrt(4x - x^2) "d"x` =
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_0^1 1/(1 + x^2) "d"x`
Evaluate: `int_0^(pi/4) sec^2 x "d"x`
Evaluate: `int_0^1 1/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_(pi/6)^(pi/3) sin^2 x "d"x`
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13) "d"x`
Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Evaluate: `int_0^(pi/2) 1/(5 + 4cos x) "d"x`
Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x)) "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
Evaluate:
`int_(π/4)^(π/2) cot^2x dx`.
Evaluate `int_(π/6)^(π/3) cos^2x dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
`int_0^1 x^2/(1 + x^2)dx` = ______.
Evaluate:
`int_0^(π/2) sinx/(1 + cosx)^3 dx`