मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate: ∫0π215+4cosx dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^(pi/2) 1/(5 + 4cos x)  "d"x`

बेरीज

उत्तर

Let I = `int_0^(pi/2) 1/(5 + 4cos x)  "d"x`

Put `tan (x/2)` = t

∴ x = 2tan−1t

∴ dx = `2/(1 + "t"^2)` dt and cos x = `(1 - "t"^2)/(1 + "t"^2)`

When x = 0, t = 0 and when x = `pi/2`, t = 1

∴ I = `int_0^1 1/(5 + 4((1 - "t"^2)/(1 + "t"^2))) xx 2/(1 + "t"^2)  "dt"`

= `2int_0^1 1/(5 + 5"t" + 4 - 4"t"^2)  "dt"`

= `2int_0^1 1/(9 + "t"^2)  "dt"`

= `2int_0^1 1/("t"^2 + 3^2)  "dt"`

= `2[1/3 tan^-1("t"/3)]_0^1`

= `2/3[tan^-1(1/3) - tan^-1(0)]`

= `2/3 tan^-1 (1/3)`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.4: Definite Integration - Short Answers II

संबंधित प्रश्‍न

Evaluate: `int_0^(π/4) cot^2x.dx`


Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`


Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`


`int_0^1 (x^2 - 2)/(x^2 + 1)  "d"x` =


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_(pi/6)^(pi/3) sin^2 x  "d"x`


Evaluate: `int_0^pi cos^2 x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`


Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x)  "d"x`


Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2)  "d"x`


Evaluate: `int_(-1)^1 |5x - 3|  "d"x`


Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2)  "d"x`


Evaluate: `int_0^1 x* tan^-1x  "d"x`


Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)  "d"x`


Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx))  "d"x`


Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x))  "d"x`


Evaluate: `int_0^3 x^2 (3 - x)^(5/2)  "d"x`


Evaluate: `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1)  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2))  "d"x`


Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`


Evaluate: `int_0^(π/4) sec^4 x  dx`


If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.


Evaluate:

`int_0^(π/2) sin^8x  dx`


Evaluate `int_(π/6)^(π/3) cos^2x  dx`


Evaluate:

`int_-4^5 |x + 3|dx`


The value of `int_2^(π/2) sin^3x  dx` = ______.


`int_0^1 x^2/(1 + x^2)dx` = ______.


Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`


If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×