Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
उत्तर
Let I = `int_0^pi x*sinx*cos^2x* "d"x` ......(i)
∴ I = `int_0^pi (pi - x)*sin(pi - x)*[cos(pi - x)]^2 "d"x` ......`[∵ int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x]`
∴ I = `int_0^pi (pi - x)*sinx( - cos x)^2 "d"x`
∴ I = `int_0^pi (pi - x)* sinx cos^2x "d"x` .....(ii)
Adding (i) and (ii), we get
2I = `int_0^pi x* sinx * cos^2x "d"x + int_0^pi (pi - x) * sinx cos^2x "d"x`
= `int_0pi (x + pi - x)* sinx cos^2x "d"x`
∴ 2I = `pi int_0^pi sinx cos^2x "d"x`
Put cos x = t
∴ − sin x dx = dt
∴ sin x dx = − dt
When x = 0, t = 1 and when x = π, t = −1
∴ 2I = `pi int_1^(-1) "t"^2 (- "dt")`
∴ I = `pi/2 int_(-1)^1 "t"^2 "dt"` .......`[∵ int_"a"^"b" "f"(x) "d"x = -int_"b"^"a" "f"(x) "d"x]`
= `pi/2 xx 2 int_0^1 "t"^2 "dt"` ......[∵ t2 is an even function]
= `pi ["t"^2/3]_0^1`
= `pi/3(1^3 - 0)`
∴ I = `pi/3`
APPEARS IN
संबंधित प्रश्न
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
`int_0^4 1/sqrt(4x - x^2) "d"x` =
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x "d"x`
Evaluate: `int_0^1 1/sqrt(1 - x^2) "d"x`
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^(pi/2) cos^3x "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x) "d"x`
Evaluate: `int_(-1)^1 |5x - 3| "d"x`
Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x)) "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
Evaluate: `int_(1/sqrt(2))^1 (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
Evaluate: `int_0^(π/4) sec^4 x dx`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_-4^5 |x + 3|dx`
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
`int_0^1 x^2/(1 + x^2)dx` = ______.
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.