मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate: ∫0πx⋅sinx⋅cos2x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`

बेरीज

उत्तर

Let I = `int_0^pi x*sinx*cos^2x* "d"x`   ......(i)

∴ I = `int_0^pi (pi - x)*sin(pi - x)*[cos(pi - x)]^2  "d"x`    ......`[∵ int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x]`

∴ I = `int_0^pi (pi - x)*sinx( - cos x)^2  "d"x`

∴ I = `int_0^pi (pi - x)* sinx cos^2x  "d"x`  .....(ii)

Adding (i) and (ii), we get

2I = `int_0^pi x* sinx * cos^2x  "d"x + int_0^pi (pi - x) * sinx cos^2x  "d"x`

= `int_0pi (x + pi - x)* sinx cos^2x  "d"x`

∴ 2I = `pi int_0^pi sinx cos^2x  "d"x`

Put cos x = t

∴ − sin x dx = dt

∴ sin x dx = − dt

When x = 0, t = 1 and when x = π, t = −1

∴ 2I = `pi int_1^(-1)  "t"^2 (- "dt")`

∴ I = `pi/2 int_(-1)^1  "t"^2  "dt"`  .......`[∵ int_"a"^"b" "f"(x)  "d"x = -int_"b"^"a"  "f"(x)  "d"x]`

= `pi/2 xx 2 int_0^1 "t"^2  "dt"`  ......[∵ t2 is an even function]

= `pi ["t"^2/3]_0^1`

= `pi/3(1^3 - 0)`

∴ I = `pi/3`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.4: Definite Integration - Long Answers III

संबंधित प्रश्‍न

If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_(pi/6)^(pi/3) cosx  "d"x`


Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`


Evaluate: `int_0^1 1/sqrt(1 - x^2)  "d"x`


Evaluate: `int_1^2 x/(1 + x^2)  "d"x`


Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1)  "d"x`


Evaluate: `int_0^(pi/2) cos^3x  "d"x`


Evaluate: `int_0^pi cos^2 x  "d"x`


Evaluate: `int_0^(pi/4)  cosx/(4 - sin^2 x)  "d"x`


Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`


Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x)  "d"x`


Evaluate: `int_(-1)^1 |5x - 3|  "d"x`


Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13)  "d"x`


Evaluate: `int_0^1 x* tan^-1x  "d"x`


Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)  "d"x`


Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x))  "d"x`


Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`


Evaluate: `int_0^3 x^2 (3 - x)^(5/2)  "d"x`


Evaluate: `int_0^1 "t"^2 sqrt(1 - "t")  "dt"`


Evaluate: `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`


Evaluate: `int_0^(π/4) sec^4 x  dx`


`int_0^(π/2) sin^6x cos^2x.dx` = ______.


If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.


Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.


Evaluate:

`int_0^(π/2) sin^8x  dx`


Evaluate:

`int_-4^5 |x + 3|dx`


Evaluate:

`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`


`int_0^1 x^2/(1 + x^2)dx` = ______.


Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`


If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×