English

Evaluate: ∫0πx⋅sinx⋅cos2x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate: 0πxsinxcos2xdx

Sum

Solution

Let I = 0πxsinxcos2xdx   ......(i)

∴ I = 0π(π-x)sin(π-x)[cos(π-x)]2 dx    ......[0af(x) dx=0af(a-x) dx]

∴ I = 0π(π-x)sinx(-cosx)2 dx

∴ I = 0π(π-x)sinxcos2x dx  .....(ii)

Adding (i) and (ii), we get

2I = 0πxsinxcos2x dx+0π(π-x)sinxcos2x dx

= 0π(x+π-x)sinxcos2x dx

∴ 2I = π0πsinxcos2x dx

Put cos x = t

∴ − sin x dx = dt

∴ sin x dx = − dt

When x = 0, t = 1 and when x = π, t = −1

∴ 2I = π1-1 t2(-dt)

∴ I = π2-11 t2 dt  .......[abf(x) dx=-ba f(x) dx]

= π2×201t2 dt  ......[∵ t2 is an even function]

= π[t23]01

= π3(13-0)

∴ I = π3

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  Is there an error in this question or solution?
Chapter 2.4: Definite Integration - Long Answers III

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.