English

Evaluate: ∫0π13+2sinx+cosx dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`

Sum

Solution

Let I = `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`

Put `tan (x/2)` = t

∴ x = 2tan−1t

∴ dx = `(2"dt")/(1 + "t"^2)`, sin x = `(2"t")/(1 + "t"^2)` and cos x = `(1 - "t"^2)/(1 + "t"^2)`

When x = 0, t = 0 and when x = π, t = ∞

∴ I = `int_0^∞ 1/(3 + 2((2"t")/(1 + "t"^2)) + (1 - "t"^2)/(1 + "t"^2)) xx (2  "dt")/(1 + "t"^2)`

= `int_0^∞ (2  "dt")/(3 + 3"t"^2 + 4"t" + 1 - "t"^2)`

= `int_0^∞ (2  "dt")/(2"t"^2 + 4"t" + 4)`

= `int_0^∞  "dt"/("t"^2 + 2"t" + 2)`

= `int_0^∞  "dt"/("t"^2 + 2"t" + 1 + 1)`

= `int_0^∞  "dt"/(("t" + 1)^2 + 1^2)`

= `[tan^-1 ("t" + 1)]_0^∞`

= `tan^-1(1 + ∞) - tan^-1(1 + 0)`

= `tan^-1(∞) - tan^-1 (1)`

= `pi/2 - pi/4`

∴ I = = `pi/4`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  Is there an error in this question or solution?
Chapter 2.4: Definite Integration - Long Answers III

RELATED QUESTIONS

Evaluate: `int_0^(π/4) cot^2x.dx`


Evaluate the following:

`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.


`int_0^(x/4) sqrt(1 + sin 2x)  "d"x` =


`int_(pi/5)^((3pi)/10)  sinx/(sinx + cosx)  "d"x` =


`int_0^1 (x^2 - 2)/(x^2 + 1)  "d"x` =


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_(pi/6)^(pi/3) cosx  "d"x`


Evaluate: `int_1^2 x/(1 + x^2)  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_(pi/6)^(pi/3) sin^2 x  "d"x`


Evaluate: `int_0^(pi/2) cos^3x  "d"x`


Evaluate: `int_0^pi cos^2 x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_0^(pi/4)  cosx/(4 - sin^2 x)  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`


Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`


Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13)  "d"x`


Evaluate: `int_0^(pi/4) sec^4x  "d"x`


Evaluate: `int_0^(pi/2) 1/(5 + 4cos x)  "d"x`


Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x))  "d"x`


Evaluate: `int_0^3 x^2 (3 - x)^(5/2)  "d"x`


Evaluate: `int_0^1 "t"^2 sqrt(1 - "t")  "dt"`


Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2))  "d"x`


Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`


Evaluate: `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


`int_0^(π/2) sin^6x cos^2x.dx` = ______.


Evaluate:

`int_(-π/2)^(π/2) |sinx|dx`


The value of `int_2^(π/2) sin^3x  dx` = ______.


Evaluate:

`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`


Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`


Evaluate:

`int_0^(π/2) sinx/(1 + cosx)^3 dx`


If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×