Advertisements
Advertisements
Question
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
Solution
Let I = `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
Put `tan (x/2)` = t
∴ x = 2tan−1t
∴ dx = `(2"dt")/(1 + "t"^2)`, sin x = `(2"t")/(1 + "t"^2)` and cos x = `(1 - "t"^2)/(1 + "t"^2)`
When x = 0, t = 0 and when x = π, t = ∞
∴ I = `int_0^∞ 1/(3 + 2((2"t")/(1 + "t"^2)) + (1 - "t"^2)/(1 + "t"^2)) xx (2 "dt")/(1 + "t"^2)`
= `int_0^∞ (2 "dt")/(3 + 3"t"^2 + 4"t" + 1 - "t"^2)`
= `int_0^∞ (2 "dt")/(2"t"^2 + 4"t" + 4)`
= `int_0^∞ "dt"/("t"^2 + 2"t" + 2)`
= `int_0^∞ "dt"/("t"^2 + 2"t" + 1 + 1)`
= `int_0^∞ "dt"/(("t" + 1)^2 + 1^2)`
= `[tan^-1 ("t" + 1)]_0^∞`
= `tan^-1(1 + ∞) - tan^-1(1 + 0)`
= `tan^-1(∞) - tan^-1 (1)`
= `pi/2 - pi/4`
∴ I = = `pi/4`
RELATED QUESTIONS
Evaluate: `int_0^(π/4) cot^2x.dx`
Evaluate the following:
`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
`int_0^(x/4) sqrt(1 + sin 2x) "d"x` =
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
`int_0^4 1/sqrt(4x - x^2) "d"x` =
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_0^(pi/2) (sin2x)/(1 + sin^2x) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_(pi/6)^(pi/3) sin^2 x "d"x`
Evaluate: `int_0^(pi/2) cos^3x "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Evaluate: `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13) "d"x`
Evaluate: `int_0^(pi/4) sec^4x "d"x`
Evaluate: `int_0^(pi/2) 1/(5 + 4cos x) "d"x`
Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x)) "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_(1/sqrt(2))^1 (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Evaluate:
`int_0^(π/2) sinx/(1 + cosx)^3 dx`
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.