English

Evaluate: ∫0121(1-2x2)1-x2 dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2))  "d"x`

Sum

Solution

Let I = `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2))  "d"x`

Put x = sin θ

∴ dx = cos θ dθ

When x = 0, θ = sin−10 = 0 and

When x = `1/2`, θ = `sin^-1 (1/2) = pi/6`

∴ I = `int_0^(pi/6) 1/((1 - 2sin^2theta)(sqrt(1 - sin^2theta)))  cos theta  "d"theta` 

= `int_0^(pi/6) 1/((cos 2theta)(cos theta))  cos theta  "d"theta`

= `int_0^(pi/6) 1/(cos 2theta) *  "d"theta`

= `int_0^(pi/6) sec 2theta  "d"theta`

= `1/2 [log|sec 2theta + tan 2theta|]_0^(pi/6)`

= `1/2[log|sec2(pi/6) + tan2(pi/6)|] - 1/2[log|sec2(0) + tan2(0)|]`

= `1/2[log|sec(pi/3) + tan(pi/3)|] - 1/2[log|sec(0) + tan(0)|]`

= `1/2[log|2 + sqrt(3)|] - 1/2 log|1|`

∴ I = `1/2 log|2 + sqrt(3)|`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  Is there an error in this question or solution?
Chapter 2.4: Definite Integration - Long Answers III

APPEARS IN

RELATED QUESTIONS

Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.


If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.


`int_(pi/5)^((3pi)/10)  sinx/(sinx + cosx)  "d"x` =


Let I1 = `int_"e"^("e"^2)  1/logx  "d"x` and I2 = `int_1^2 ("e"^x)/x  "d"x` then 


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_(pi/6)^(pi/3) cosx  "d"x`


Evaluate: `int_0^(pi/4) sec^2 x  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`


Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`


Evaluate: `int_(-1)^1 |5x - 3|  "d"x`


Evaluate: `int_0^1 x* tan^-1x  "d"x`


Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)  "d"x`


Evaluate: `int_0^(pi/4) sec^4x  "d"x`


Evaluate: `int_0^(pi/2) 1/(5 + 4cos x)  "d"x`


Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx))  "d"x`


Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`


Evaluate: `int_0^1 "t"^2 sqrt(1 - "t")  "dt"`


Evaluate: `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2)  "d"x`


Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2))  "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.


Evaluate:

`int_(-π/2)^(π/2) |sinx|dx`


Evaluate:

`int_-4^5 |x + 3|dx`


The value of `int_2^(π/2) sin^3x  dx` = ______.


Evaluate:

`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`


`int_0^1 x^2/(1 + x^2)dx` = ______.


Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`


Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×