Advertisements
Advertisements
Question
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Solution
Let I = `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Put x = sin θ
∴ dx = cos θ dθ
When x = 0, θ = sin−10 = 0 and
When x = `1/2`, θ = `sin^-1 (1/2) = pi/6`
∴ I = `int_0^(pi/6) 1/((1 - 2sin^2theta)(sqrt(1 - sin^2theta))) cos theta "d"theta`
= `int_0^(pi/6) 1/((cos 2theta)(cos theta)) cos theta "d"theta`
= `int_0^(pi/6) 1/(cos 2theta) * "d"theta`
= `int_0^(pi/6) sec 2theta "d"theta`
= `1/2 [log|sec 2theta + tan 2theta|]_0^(pi/6)`
= `1/2[log|sec2(pi/6) + tan2(pi/6)|] - 1/2[log|sec2(0) + tan2(0)|]`
= `1/2[log|sec(pi/3) + tan(pi/3)|] - 1/2[log|sec(0) + tan(0)|]`
= `1/2[log|2 + sqrt(3)|] - 1/2 log|1|`
∴ I = `1/2 log|2 + sqrt(3)|`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_0^(pi/4) sec^2 x "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_(-1)^1 |5x - 3| "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Evaluate: `int_0^(pi/4) sec^4x "d"x`
Evaluate: `int_0^(pi/2) 1/(5 + 4cos x) "d"x`
Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx)) "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
Evaluate: `int_(1/sqrt(2))^1 (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2)) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
Evaluate:
`int_-4^5 |x + 3|dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
`int_0^1 x^2/(1 + x^2)dx` = ______.
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`