Advertisements
Advertisements
Question
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Options
a = e, b = –2
a = e, b = 2
a = –e, b = 2
a = –e, b = –2
Solution
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then a = e, b = –2.
Explanation:
Given that, `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`
Put logx = z
⇒ x = ez
⇒ dx = ez dz
∴ `int_2^e [1/logx - 1/(logx)^2].dx = int_log2^1 [1/z - 1/z^2]e^z.dz`
= `int_log2^1 e^z [1/z + d(1/z)].dz`
= `[e^z . 1/z]_log2^1`
= `e - 2/log2`
∴ a = e and b = –2
APPEARS IN
RELATED QUESTIONS
Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`
Evaluate the following:
`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
`int_0^(x/4) sqrt(1 + sin 2x) "d"x` =
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_0^1 1/sqrt(1 - x^2) "d"x`
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_(pi/6)^(pi/3) sin^2 x "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x) "d"x`
Evaluate: `int_(-1)^1 |5x - 3| "d"x`
Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx)) "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2)) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
Evaluate: `int_0^(π/4) sec^4 x dx`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
Evaluate:
`int_0^(π/2) sin^8x dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.