English

Evaluate: ∫0π2sin4xsin4x+cos4x dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x)  "d"x`

Sum

Solution

Let I = `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x)  "d"x`   ........(i)

= `int_0^(pi/2) (sin^4(pi/2 - x))/(sin^4(pi/2 - x) + cos^4(pi/2 - x))`  .......`[∵ int_0^"a" "f"(x)"d"x = int_0^"a" "f"("a" - x)"d"x]`

∴ I = `int_0^(pi/2) (cos^4x)/(cos^4x + sin^4x)  "d"x` ........(ii)

Adding (i) and (ii), we get

2I = `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x)  "d"x + int_0^(pi/2) (cos^4x)/(cos^4x + sin^4x)  "d"x`

= `int_0^(pi/2) (sin^4x + cos^4x)/(sin^4x + cos^4x)  "d"x`

∴ 2I = `int_0^(pi/2)1*"d"x`

∴ I = `1/2[x]_0^(pi/2)`

= `1/2(pi/2 - 0)`

∴ I = `pi/4`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  Is there an error in this question or solution?
Chapter 2.4: Definite Integration - Short Answers II

APPEARS IN

RELATED QUESTIONS

Evaluate: `int_0^(π/4) cot^2x.dx`


Evaluate: `int_0^(pi/2) x sin x.dx`


Evaluate: `int_0^oo xe^-x.dx`


Evaluate the following:

`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`


`int_(pi/5)^((3pi)/10)  sinx/(sinx + cosx)  "d"x` =


Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`


Evaluate: `int_0^(pi/4) sec^2 x  "d"x`


Evaluate: `int_1^2 x/(1 + x^2)  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x)  "d"x`


Evaluate: `int_0^(pi/2) cos^3x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_0^(pi/4)  cosx/(4 - sin^2 x)  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`


Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2)  "d"x`


Evaluate: `int_0^(pi/4) sec^4x  "d"x`


Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx))  "d"x`


Evaluate: `int_0^3 x^2 (3 - x)^(5/2)  "d"x`


Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`


Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1)  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2)  "d"x`


Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`


Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`


Evaluate:

`int_(π/4)^(π/2) cot^2x  dx`.


Evaluate `int_(π/6)^(π/3) cos^2x  dx`


Evaluate:

`int_-4^5 |x + 3|dx`


The value of `int_2^(π/2) sin^3x  dx` = ______.


Evaluate:

`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`


Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`


Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`


If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×