Advertisements
Advertisements
Question
Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x) "d"x`
Solution
Let I = `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x) "d"x` ........(i)
= `int_0^(pi/2) (sin^4(pi/2 - x))/(sin^4(pi/2 - x) + cos^4(pi/2 - x))` .......`[∵ int_0^"a" "f"(x)"d"x = int_0^"a" "f"("a" - x)"d"x]`
∴ I = `int_0^(pi/2) (cos^4x)/(cos^4x + sin^4x) "d"x` ........(ii)
Adding (i) and (ii), we get
2I = `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x) "d"x + int_0^(pi/2) (cos^4x)/(cos^4x + sin^4x) "d"x`
= `int_0^(pi/2) (sin^4x + cos^4x)/(sin^4x + cos^4x) "d"x`
∴ 2I = `int_0^(pi/2)1*"d"x`
∴ I = `1/2[x]_0^(pi/2)`
= `1/2(pi/2 - 0)`
∴ I = `pi/4`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int_0^(π/4) cot^2x.dx`
Evaluate: `int_0^(pi/2) x sin x.dx`
Evaluate: `int_0^oo xe^-x.dx`
Evaluate the following:
`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x "d"x`
Evaluate: `int_0^(pi/4) sec^2 x "d"x`
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x) "d"x`
Evaluate: `int_0^(pi/2) cos^3x "d"x`
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Evaluate: `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2) "d"x`
Evaluate: `int_0^(pi/4) sec^4x "d"x`
Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx)) "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
Evaluate:
`int_(π/4)^(π/2) cot^2x dx`.
Evaluate `int_(π/6)^(π/3) cos^2x dx`
Evaluate:
`int_-4^5 |x + 3|dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.