English

Evaluate: ∫01log(x+1)x2+1 dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1)  "d"x`

Sum

Solution

Let I = `int_0^1 (log(x + 1))/(x^2 + 1)  "d"x`

Put x = tan θ

∴ dx = sec2θ dθ

When x = 0, θ = 0 and when x = 1, θ = `pi/4`

∴ I = `int_0^(pi/4)(log(tantheta + 1))/(tan^2theta + 1) xx sec^2theta  "d"theta`

= `int_0^(pi/4) (log(1 + tantheta))/(sec^2theta) xx sec^2theta  "d"theta`

∴ I = `int_0^(pi/4) log(1 + tan theta)  "d"theta`  ......(i)

= `int_0^(pi/4) log[1 + tan(pi/4 - theta)] "d"theta`  ......`[∵ int_0^"a" "f"(x)  "d"x = int_0^"a"  "f"("a" - x)  "d"x]`

= `int_0^(pi/4) log[1 + (tan  pi/4 - tantheta)/(1 + tan  pi/4 tan theta)] "d"theta`

= `int_0^(pi/4) log[1 + (1 - tan theta)/(1 + tan theta)]  "d"theta`

= `int_0^(pi/4) log[(1 + tan theta + 1 - tan theta)/(1 + tan theta)] "d"theta`

= `int_0^(pi/4) log[2/(1 + tan theta)] "d"theta`

= `int_0^(pi/4) [log2 - log(1 + tan theta)]  "d"theta`

= `log 2 int_0^(pi/4)  "d"theta - int_0^(pi/4) log(1 + tan theta)  "d"theta`

∴ I = `log 2[theta]_0^(pi/4) - "I"`     .....[From (i)]

∴ 2I = `log 2(pi/4 - 0)`

∴ I = `pi/8 log 2`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  Is there an error in this question or solution?
Chapter 2.4: Definite Integration - Long Answers III

APPEARS IN

RELATED QUESTIONS

Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.


`int_0^(x/4) sqrt(1 + sin 2x)  "d"x` =


If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.


`int_(pi/5)^((3pi)/10)  sinx/(sinx + cosx)  "d"x` =


`int_0^1 (x^2 - 2)/(x^2 + 1)  "d"x` =


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`


Evaluate: `int_0^1 |x|  "d"x`


Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1)  "d"x`


Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x)  "d"x`


Evaluate: `int_0^(pi/2) cos^3x  "d"x`


Evaluate: `int_0^pi cos^2 x  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`


Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x)  "d"x`


Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2)  "d"x`


Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13)  "d"x`


Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2)  "d"x`


Evaluate: `int_0^1 x* tan^-1x  "d"x`


Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`


Evaluate: `int_0^1 "t"^2 sqrt(1 - "t")  "dt"`


Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2)  "d"x`


Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


Evaluate: `int_0^(π/4) sec^4 x  dx`


If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.


Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.


Evaluate:

`int_(-π/2)^(π/2) |sinx|dx`


Evaluate:

`int_0^(π/2) sinx/(1 + cosx)^3 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×