Advertisements
Advertisements
Question
Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
Solution
Let I = `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
Put x = tan θ
∴ dx = sec2θ dθ
When x = 0, θ = 0 and when x = 1, θ = `pi/4`
∴ I = `int_0^(pi/4)(log(tantheta + 1))/(tan^2theta + 1) xx sec^2theta "d"theta`
= `int_0^(pi/4) (log(1 + tantheta))/(sec^2theta) xx sec^2theta "d"theta`
∴ I = `int_0^(pi/4) log(1 + tan theta) "d"theta` ......(i)
= `int_0^(pi/4) log[1 + tan(pi/4 - theta)] "d"theta` ......`[∵ int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x]`
= `int_0^(pi/4) log[1 + (tan pi/4 - tantheta)/(1 + tan pi/4 tan theta)] "d"theta`
= `int_0^(pi/4) log[1 + (1 - tan theta)/(1 + tan theta)] "d"theta`
= `int_0^(pi/4) log[(1 + tan theta + 1 - tan theta)/(1 + tan theta)] "d"theta`
= `int_0^(pi/4) log[2/(1 + tan theta)] "d"theta`
= `int_0^(pi/4) [log2 - log(1 + tan theta)] "d"theta`
= `log 2 int_0^(pi/4) "d"theta - int_0^(pi/4) log(1 + tan theta) "d"theta`
∴ I = `log 2[theta]_0^(pi/4) - "I"` .....[From (i)]
∴ 2I = `log 2(pi/4 - 0)`
∴ I = `pi/8 log 2`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
`int_0^(x/4) sqrt(1 + sin 2x) "d"x` =
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
`int_0^4 1/sqrt(4x - x^2) "d"x` =
Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x "d"x`
Evaluate: `int_0^1 |x| "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x) "d"x`
Evaluate: `int_0^(pi/2) cos^3x "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x) "d"x`
Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2) "d"x`
Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13) "d"x`
Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
Evaluate: `int_0^(π/4) sec^4 x dx`
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
Evaluate:
`int_0^(π/2) sinx/(1 + cosx)^3 dx`