English

If dk∫01dx1+x-x=k3, then k is equal to ______. - Mathematics and Statistics

Advertisements
Advertisements

Question

If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.

Options

  • `sqrt(2)(2sqrt(2) - 2)`

  • `sqrt(2)/3(2 - 2sqrt(2))`

  • `(2sqrt(2) - 2)/3`

  • `4sqrt(2)`

MCQ
Fill in the Blanks

Solution

If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to `bb(underline(4sqrt(2))`.

Explanation:

Step 1: Rationalizing the Denominator

`sqrt(1+x)-sqrtx = ((1+x)-x)/(sqrt(1+x) + sqrtx) = 1/(sqrt(1+x) + sqrtx)`

`I = int_0^1(sqrt(1+x) + sqrtx)dx`

Step 2: Evaluating Each Integral

`I = int_0^1 sqrt(1+x)  dx + int_0^1sqrtx  dx`

Using standard integration formulas:

`(4sqrt2 - 2)/3`

`2/3`

`I = (4sqrt2 - 2)/3 + 2/3 = (4sqrt2)/3`

Step 3: Finding k

`I = k/3`

`k = 4sqrt2`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  Is there an error in this question or solution?
Chapter 2.4: Definite Integration - MCQ

RELATED QUESTIONS

Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`


Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`


Evaluate the following:

`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`


`int_0^(x/4) sqrt(1 + sin 2x)  "d"x` =


`int_0^1 (x^2 - 2)/(x^2 + 1)  "d"x` =


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`


Evaluate: `int_0^1 |x|  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x)  "d"x`


Evaluate: `int_0^(pi/2) cos^3x  "d"x`


Evaluate: `int_0^(pi/4)  cosx/(4 - sin^2 x)  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`


Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2)  "d"x`


Evaluate: `int_(-1)^1 |5x - 3|  "d"x`


Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2)  "d"x`


Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x))  "d"x`


Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`


Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1)  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`


Evaluate: `int_0^(π/4) sec^4 x  dx`


`int_0^(π/2) sin^6x cos^2x.dx` = ______.


If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.


Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.


Evaluate `int_(π/6)^(π/3) cos^2x  dx`


Evaluate:

`int_-4^5 |x + 3|dx`


Evaluate:

`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`


Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×