Advertisements
Advertisements
Question
Evaluate: `int_(-1)^1 |5x - 3| "d"x`
Solution
Let I = `int_(-1)^1 |5x - 3| "d"x`
|5x − 3| = − (5x − 3) when (5x − 3) < 0 i.e. x < `3/5`
= 5x – 3 when (5x – 3) > 0 i.e., x > `3/5`
∴ I = `int_(-1)^(3/5) |5x - 3| "d"x + int_(3/5)^1|5x - 3| "d"x`
= `int_(-1)^(3/5) -(5x - 3) "d"x + int_(3/5)^1 (5x - ) "d"x`
= `-5int_(-1)^(3/5)x "d"x + 3int_(-1)^(3/5) "d"x + 5 int_(3/5)^1x "d"x - 3int_(3/5)^1 "d"x`
= `-5/2[x^2/2]_(-1)^(3/5) + 3[x]_(-1)^(3/5) + 5[x^2/2]_(3/5)^1 - 3[x]_(3/5)^1`
= `-5/2[(3/5)^2 - (-1)^2] + 3[3/5 - (-1)] + 5/2[(1)^2 - (3/2)^2] - 3(1 -3/5)`
= `5/2(9/25 - 1) + 3(3/5 + 1) + 5/2(1 - 9/25) - 3(2/5)`
= `-5/2((-16)/25) + 3(8/5) + 5/2(16/25) - 6/5`
= `8/5 + 24/5 + 8/5 - 6/5`
= `34/5`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int_0^(pi/2) x sin x.dx`
Evaluate: `int_0^oo xe^-x.dx`
Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`
Evaluate the following:
`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
`int_0^4 1/sqrt(4x - x^2) "d"x` =
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^(pi/2) (sin2x)/(1 + sin^2x) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_(pi/6)^(pi/3) sin^2 x "d"x`
Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x) "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x) "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_(1/sqrt(2))^1 (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2)) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate:
`int_(π/4)^(π/2) cot^2x dx`.
Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`
`int_0^1 x^2/(1 + x^2)dx` = ______.
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`