English

Evaluate: ∫-11|5x-3| dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate: `int_(-1)^1 |5x - 3|  "d"x`

Sum

Solution

Let I = `int_(-1)^1 |5x - 3|  "d"x`

|5x − 3| = − (5x − 3) when (5x − 3) < 0 i.e. x < `3/5`

= 5x – 3 when (5x – 3) > 0 i.e., x > `3/5`

∴ I = `int_(-1)^(3/5) |5x - 3|  "d"x + int_(3/5)^1|5x - 3| "d"x`

= `int_(-1)^(3/5) -(5x - 3)  "d"x + int_(3/5)^1 (5x - )  "d"x`

= `-5int_(-1)^(3/5)x  "d"x + 3int_(-1)^(3/5)  "d"x + 5 int_(3/5)^1x  "d"x - 3int_(3/5)^1  "d"x`

= `-5/2[x^2/2]_(-1)^(3/5) + 3[x]_(-1)^(3/5) + 5[x^2/2]_(3/5)^1 - 3[x]_(3/5)^1`

= `-5/2[(3/5)^2 - (-1)^2] + 3[3/5 - (-1)] + 5/2[(1)^2 - (3/2)^2] - 3(1 -3/5)`

= `5/2(9/25 - 1) + 3(3/5 + 1) + 5/2(1 - 9/25) - 3(2/5)`

= `-5/2((-16)/25) + 3(8/5) + 5/2(16/25) - 6/5`

= `8/5 + 24/5 + 8/5 - 6/5`

= `34/5`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  Is there an error in this question or solution?
Chapter 2.4: Definite Integration - Short Answers II

APPEARS IN

RELATED QUESTIONS

Evaluate: `int_0^(pi/2) x sin x.dx`


Evaluate: `int_0^oo xe^-x.dx`


Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`


Evaluate the following:

`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`


If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.


`int_0^1 (x^2 - 2)/(x^2 + 1)  "d"x` =


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_1^2 x/(1 + x^2)  "d"x`


Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1)  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_(pi/6)^(pi/3) sin^2 x  "d"x`


Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x)  "d"x`


Evaluate: `int_0^pi cos^2 x  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`


Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x)  "d"x`


Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`


Evaluate: `int_0^3 x^2 (3 - x)^(5/2)  "d"x`


Evaluate: `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2)  "d"x`


Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2))  "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`


If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.


Evaluate:

`int_(π/4)^(π/2) cot^2x  dx`.


Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.


Evaluate:

`int_0^(π/2) sin^8x  dx`


Evaluate:

`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`


`int_0^1 x^2/(1 + x^2)dx` = ______.


Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`


Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×