English

Evaluate: ∫12x1+x2 dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate: `int_1^2 x/(1 + x^2)  "d"x`

Sum

Solution

`int_1^2 x/(1 + x^2)  "d"x = 1/2 int_1^2 (2x)/(1 +  x^2)  "d"x`

= `1/2[log|1 + x^2|]_1^2`    ........`[∵ int ("f'"(x))/("f"(x))  "d"x = log|"f"(x)| + c"]`

= `1/2(log 5 - log 2)`

=`1/2 log(5/2)`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  Is there an error in this question or solution?
Chapter 2.4: Definite Integration - Very Short Answers

APPEARS IN

RELATED QUESTIONS

Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`


Evaluate: `int_0^oo xe^-x.dx`


`int_0^(x/4) sqrt(1 + sin 2x)  "d"x` =


If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.


`int_(pi/5)^((3pi)/10)  sinx/(sinx + cosx)  "d"x` =


Let I1 = `int_"e"^("e"^2)  1/logx  "d"x` and I2 = `int_1^2 ("e"^x)/x  "d"x` then 


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_0^1 |x|  "d"x`


Evaluate: `int_0^1 1/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1)  "d"x`


Evaluate: `int_(pi/6)^(pi/3) sin^2 x  "d"x`


Evaluate: `int_0^(pi/2) cos^3x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_0^(pi/4)  cosx/(4 - sin^2 x)  "d"x`


Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13)  "d"x`


Evaluate: `int_0^(pi/4) sec^4x  "d"x`


Evaluate: `int_0^1 "t"^2 sqrt(1 - "t")  "dt"`


Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`


Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1)  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`


If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.


Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.


Evaluate:

`int_0^(π/2) sin^8x  dx`


Evaluate:

`int_(-π/2)^(π/2) |sinx|dx`


Evaluate:

`int_-4^5 |x + 3|dx`


Evaluate:

`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`


`int_0^1 x^2/(1 + x^2)dx` = ______.


Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`


Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`


If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×