English

SCERT Maharashtra solutions for Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC chapter 2.4 - Definite Integration [Latest edition]

Advertisements

Chapters

SCERT Maharashtra solutions for Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC chapter 2.4 - Definite Integration - Shaalaa.com
Advertisements

Solutions for Chapter 2.4: Definite Integration

Below listed, you can find solutions for Chapter 2.4 of Maharashtra State Board SCERT Maharashtra for Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC.


MCQVery Short AnswersShort Answers IShort Answers IILong Answers III
MCQ

SCERT Maharashtra solutions for Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC 2.4 Definite Integration MCQ

2 Marks each

MCQ | Q 1

`int_1^9 (x + 1)/sqrt(x)  "d"x` =

  • `80/3`

  • `64/3`

  • `17/3`

  • `15/3`

MCQ | Q 2

`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =

  • `pi/2 - 1`

  • `pi/2 + 1`

  • `pi/2 - 2`

  • `p/2 + 2`

MCQ | Q 3

`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =

  • `2sqrt("e")(1 + sqrt("e"))`

  • `sqrt("e")(1 - sqrt("e"))`

  • `sqrt("e")(sqrt("e") - 1)`

  • `sqrt("e")(1 + sqrt("e"))`

MCQ | Q 4

`int_0^(x/4) sqrt(1 + sin 2x)  "d"x` =

  • `1/sqrt(2)`

  • `sqrt(2) + 1`

  • `2sqrt(2)`

  • 1

MCQ | Q 5

If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.

  • `sqrt(2)(2sqrt(2) - 2)`

  • `sqrt(2)/3(2 - 2sqrt(2))`

  • `(2sqrt(2) - 2)/3`

  • `4sqrt(2)`

MCQ | Q 6

`int_(pi/5)^((3pi)/10)  sinx/(sinx + cosx)  "d"x` =

  • `pi/10`

  • `pi/20`

  • `pi/6`

  • `pi/12`

MCQ | Q 7

`int_0^1 (x^2 - 2)/(x^2 + 1)  "d"x` =

  • `1 - (3pi)/4`

  • `2 - (3pi)/4`

  • `1 + (3pi)/4`

  • `2 + (3pi)/4`

MCQ | Q 8

Let I1 = `int_"e"^("e"^2)  1/logx  "d"x` and I2 = `int_1^2 ("e"^x)/x  "d"x` then 

  • I1 = `1/3 "I"_2`

  • I1 + I2 = 0 

  • I1 = 2I2 

  • I1 = I2 

MCQ | Q 9

`int_0^4 1/sqrt(4x - x^2)  "d"x` =

  • 0

  • π

MCQ | Q 10

`int_0^(pi/2) log(tanx)  "d"x` =

  • `pi/8(log2)`

  • 0

  • `- pi/8 (log2)`

  • `pi/2 (log2)`

Very Short Answers

SCERT Maharashtra solutions for Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC 2.4 Definite Integration Very Short Answers

1 Mark

Very Short Answers | Q 1

Evaluate: `int_(pi/6)^(pi/3) cosx  "d"x`

Very Short Answers | Q 2

Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`

Very Short Answers | Q 3

Evaluate: `int_0^1 1/(1 + x^2)  "d"x`

Very Short Answers | Q 4

Evaluate: `int_0^(pi/4) sec^2 x  "d"x`

Very Short Answers | Q 5

Evaluate: `int_0^1 |x|  "d"x`

Very Short Answers | Q 6

Evaluate: `int_0^1 1/sqrt(1 - x^2)  "d"x`

Very Short Answers | Q 7

Evaluate: `int_1^2 x/(1 + x^2)  "d"x`

Very Short Answers | Q 8

Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1)  "d"x`

Very Short Answers | Q 9

Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`

Very Short Answers | Q 10

Evaluate: `int_0^1(x + 1)^2  "d"x`

Short Answers I

SCERT Maharashtra solutions for Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC 2.4 Definite Integration Short Answers I

2 Marks

Short Answers I | Q 1

Evaluate: `int_(pi/6)^(pi/3) sin^2 x  "d"x`

Short Answers I | Q 2

Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x)  "d"x`

Short Answers I | Q 3

Evaluate: `int_0^(pi/2) cos^3x  "d"x`

Short Answers I | Q 4

Evaluate: `int_0^pi cos^2 x  "d"x`

Short Answers I | Q 5

Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`

Short Answers I | Q 6

Evaluate: `int_0^(pi/4)  cosx/(4 - sin^2 x)  "d"x`

Short Answers I | Q 7

Evaluate: `int_1^3 (cos(logx))/x  "d"x`

Short Answers I | Q 8

Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`

Short Answers I | Q 9

Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`

Short Answers II

SCERT Maharashtra solutions for Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC 2.4 Definite Integration Short Answers II

3 Marks

Short Answers II | Q 1

Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"c""f"(x)  "d"x + int_"c"^"b"  "f"(x)  "d"x`, where a < c < b

Short Answers II | Q 2

Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`

Short Answers II | Q 3

Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 

Short Answers II | Q 4

Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x)  "d"x`

Short Answers II | Q 5

Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2)  "d"x`

Short Answers II | Q 6

Evaluate: `int_(-1)^1 |5x - 3|  "d"x`

Short Answers II | Q 7

Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13)  "d"x`

Short Answers II | Q 8

Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2)  "d"x`

Short Answers II | Q 9

Evaluate: `int_0^1 x* tan^-1x  "d"x`

Short Answers II | Q 10

Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)  "d"x`

Short Answers II | Q 11

Evaluate: `int_0^(pi/4) sec^4x  "d"x`

Short Answers II | Q 12

Evaluate: `int_0^(pi/2) 1/(5 + 4cos x)  "d"x`

Short Answers II | Q 13

Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx))  "d"x`

Short Answers II | Q 14

Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x))  "d"x`

Short Answers II | Q 15

Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`

Short Answers II | Q 16

Evaluate: `int_0^3 x^2 (3 - x)^(5/2)  "d"x`

Short Answers II | Q 17

Evaluate: `int_0^1 "t"^2 sqrt(1 - "t")  "dt"`

Long Answers III

SCERT Maharashtra solutions for Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC 2.4 Definite Integration Long Answers III

4 Marks

Long Answers III | Q 1

Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`

Long Answers III | Q 2

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`

Long Answers III | Q 3

Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2))  "d"x`

Long Answers III | Q 4

Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`

Long Answers III | Q 5

Evaluate: `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`

Long Answers III | Q 6

Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1)  "d"x`

Long Answers III | Q 7

Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`

Long Answers III | Q 8

Evaluate: `int_0^(pi/2) x sin x.dx`

Long Answers III | Q 9

Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2)  "d"x`

Long Answers III | Q 10

Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2))  "d"x`

Long Answers III | Q 11

Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`

Long Answers III | Q 12

Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`

Long Answers III | Q 13

Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`

Solutions for 2.4: Definite Integration

MCQVery Short AnswersShort Answers IShort Answers IILong Answers III
SCERT Maharashtra solutions for Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC chapter 2.4 - Definite Integration - Shaalaa.com

SCERT Maharashtra solutions for Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC chapter 2.4 - Definite Integration

Shaalaa.com has the Maharashtra State Board Mathematics Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC Maharashtra State Board solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. SCERT Maharashtra solutions for Mathematics Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC Maharashtra State Board 2.4 (Definite Integration) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. SCERT Maharashtra textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC chapter 2.4 Definite Integration are Definite Integral as Limit of Sum, Fundamental Theorem of Integral Calculus, Methods of Evaluation and Properties of Definite Integral.

Using SCERT Maharashtra Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC solutions Definite Integration exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in SCERT Maharashtra Solutions are essential questions that can be asked in the final exam. Maximum Maharashtra State Board Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC students prefer SCERT Maharashtra Textbook Solutions to score more in exams.

Get the free view of Chapter 2.4, Definite Integration Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC additional questions for Mathematics Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC Maharashtra State Board, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×