Advertisements
Advertisements
Question
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Options
`pi/2 - 1`
`pi/2 + 1`
`pi/2 - 2`
`p/2 + 2`
Solution
`pi/2 - 1`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following definite integral:
`int_1^3 logx.dx`
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
If `int_0^"a" (2x + 1) "d"x` = 2, find a
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`
Solve the following.
`int_1^3 x^2 logxdx`