Advertisements
Advertisements
Question
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Solution
Let I = `int_2^3 x/((x + 2)(x + 3)) dx`
Let `x/((x + 2)(x + 3)) = "A"/(x + 2) + "B"/(x + 3)` ...(i)
∴ x = A(x + 3) + B(x + 2) ...(ii)
Putting x = – 3 in (ii), we get,
∴ B = 3
Putting x = – 2 in (ii),we get,
∴ A = – 2
From (i), we get,
`x/((x + 2)(x + 3)) = (–2)/(x + 2) + (3)/(x + 3)`
∴ I = `int_2^3 [(–2)/(x + 2) + 3/(x + 3)].dx`
∴ I = `–2int_2^3 (1)/(x + 2).dx + 3 int_2^3 (1)/(x + 3).dx`
∴ I = `–2[log|x + 2|]_2^3 + 3[log|x + 3|]_2^3`
∴ I = `–2log[log 5 – log 4] + 3[log 6 – log 5]`
∴ I = `–2[log(5/4)] + 3[log(6/5)]`
∴ I = `3log(6/5) – 2log(5/4)`
∴ I = `log(6/5)^3 – 2log(5/4)^2`
∴ I = `log(216/125) – log(25/16)`
∴ I = `log(216/125 × 16/25)`
∴ I = `log(3456/3125)`.
APPEARS IN
RELATED QUESTIONS
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Solve the following.
`int_1^3x^2logx dx`