Advertisements
Advertisements
Question
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Solution
Let I = `int_(-1)^1 e^x/(a^2(e^x)^2 + b^2)*dx`
Put ex = t
∴ ex·dx = dt
When x = 1, t = e
When x = – 1, t = e–1 = `(1)/e`
∴ I = `int_(1/e)^e dt/(a^2t^2 + b^2)`
= `int_(1/e)^e dt/((at)^2 + b^2)`
= `[1/a*1/b tan^-1 ("at"/b)]_(1/e)^e`
= `(1)/"ab" tan^-1 ("ae"/b) - (1)/"ab" tan^-1 (a/"be")`
= `(1)"ab"[tan^-1 ("ae"/b) - tan^-1 (a/"be")]`.
APPEARS IN
RELATED QUESTIONS
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
If `int_0^"a" (2x + 1) "d"x` = 2, find a
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`