Advertisements
Advertisements
Question
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Solution
|x – 2| = 2 – x, if x < 2
= x – 2, if x ≥ 2
∴ `int_(-2)^(3) |x - 2|*dx = int_(-2)^(3) |x - 2|*dx + int_(2)^(3)|x - 2|*dx`
= `int_(-2)^(3) (2 - x)*dx + int_(2)^(3) (x - 2)*dx`
= `[(2 - x)^2/((- 2))]_(-2)^(2) + [(x - 2)^2/2]_3^2`
= `[0 - (4)^2/(- 2)^2] + [1^2/2 - 0^2/2]`
= `8 + (1)/(2)`
= `(17)/(2)`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
`int_2^3 x^4*dx` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Fill in the blank : `int_2^3 x^4*dx` = _______
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`