English

Evaluate the following : ∫-23|x-2|⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int_(-2)^(3) |x - 2|*dx`

Sum

Solution

|x – 2| = 2 – x, if x < 2
= x – 2, if x ≥ 2

∴ `int_(-2)^(3) |x - 2|*dx = int_(-2)^(3) |x - 2|*dx + int_(2)^(3)|x - 2|*dx`

= `int_(-2)^(3) (2 - x)*dx + int_(2)^(3) (x - 2)*dx`

= `[(2 - x)^2/((- 2))]_(-2)^(2) + [(x - 2)^2/2]_3^2`

= `[0 - (4)^2/(- 2)^2] + [1^2/2 - 0^2/2]`

= `8 + (1)/(2)`

= `(17)/(2)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Miscellaneous Exercise 4 [Page 176]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Definite Integration
Miscellaneous Exercise 4 | Q 3.1 | Page 176

RELATED QUESTIONS

Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`


Evaluate : `int_0^1 x tan^-1x*dx`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate:

`int_0^1 sqrt((1 - x)/(1 + x)) * dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


Choose the correct alternative :

`int_2^3 x^4*dx` =


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Fill in the blank : `int_2^3 x^4*dx` = _______


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


Solve the following:

`int_0^1 e^(x^2)*x^3dx`


Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`


Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


Choose the correct alternative:

`int_2^3 x^4  "d"x` =


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)  dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate the following definite integral:

`int_1^3 logx  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5).dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the integral.

`int_-9^9 x^3/(4-x^2) dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×