Advertisements
Advertisements
Question
Choose the correct alternative :
`int_2^3 x^4*dx` =
Options
`(1)/(2)`
`(5)/(2)`
`(5)/(211)`
`(211)/(5)`
Solution
`int_2^3 x^4*dx` = `[x^5/5]_2^1`
= `(1)/(5)(3^5 - 2^5)`
= `(1)/(5)(243 - 32)`
= `(211)/(5)`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Fill in the blank : `int_2^3 x^4*dx` = _______
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Solve the following.
`int_1^3x^2log x dx`