Advertisements
Advertisements
Question
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solution
Let I = `int_0^1 e^(x^2)*x^3dx`
= `int_0^1 e^(x^2)*x^2*xdx`
Put x2 = t
∴ 2x·dx = dt
∴ x·dx = `(1)/(2)*"dt"`
When x = 0, t = 0
When x = 1, t = 1
∴ I = `(1)/(2) int_0^1 e^"t"*"tdt"`
= `(1)/(2){["t" int e^"t"*"dt"]_0^1 - int_0^1[d/"dt" ("t") int e^"t"*"dt"]"dt"}`
= `(1)/(2) [["t"*e^"t"]_0^1 - int_0^1 1*e^"t" "dt"]`
= `(1)/(2){(1*e^1 - 0) - [e^"t"]_0^1}`
= `(1)/(2)[e - (e^1 - e^0)]`
= `(1)/(2)(e - e + 1)`
∴ I = `(1)/(2)`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Solve the following.
`int_1^3x^2 logx dx`