Advertisements
Advertisements
Question
Solve the following:
`int_1^3 x^2 log x*dx`
Solution
Let I = `int_1^3 x^2 log x*dx`
= `[log x int x^2*dx]_1^3 - int_1^3 [d/dx (log x) int x^2*dx]*dx`
= `[log x* x^3/3]_1^3 - int_1^3 (1)/x* x^3/(3) *dx`
= `[9 log 3 - log 1* 1/3] - (1)/(3) int_1^3 x^2*dx`
= `[9 log 3 - 0] - (1)/(3)[x^3/3]_1^3`
= `9 log 3 - (1)/(3)(27/3 - 1/3)`
= `9 log 3 - (1)/(3)(26/3)`
∴ I = `9 log 3 - (26)/(9)`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
If `int_0^"a" (2x + 1) "d"x` = 2, find a
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 logx dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`