Advertisements
Advertisements
Question
Evaluate : `int_0^(pi/4) sin^4x*dx`
Solution
Consider sin4x = `(sin^2x)^2`
= `((1 - cos 2x)/2)^2`
= `(1)/(4)[1 - 2 cos 2x + cos^2 2x]`
= `(1)/(4)[1 - 2 cos 2x + (1 + cos 4x)/2]`
= `(1)/(4)[3/2 - 2 cos 2x + 1/2 cos 4x]`
∴ `int_0^(pi/4) sin^4x*dx`
= `(1)/(4) int_0^(pi/4) [3/2 - 2 cos 2x 1/2 cos 4x]*dx`
= `(3)/(8) int_0^(pi/4) 1*dx - 1/2 int_0^(pi/4) cos 2x*dx + 1/8 int_0^(pi/4) cos 4x*dx`
= `(3)/(8)[x]_0^(pi/4) - 1/2[(sin2x)/2]_0^(pi/4) + 1/8[(sin4x)/4]_0^(pi/4)`
= `(3)/(8)[pi/4 - 0] - 1/4[sin pi/2 - sin0] + 1/32[sin pi - sin0]`
= `(3pi)/(32) - (1)/(4)[1 - 0] + (1)/(32)(0 - 0)`
= `(3pi)/(32) - (1)/(4)`
= `(3pi - 8)/(32)`.
APPEARS IN
RELATED QUESTIONS
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
Solve the following `int_1^3 x^2log x dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
The principle solutions of the equation cos θ = `1/2` are ______.
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Solve the following.
`int_1^3x^2log x dx`