Advertisements
Advertisements
Question
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
Solution
Let I = `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
= `int_0^"a" ("a" - x)^2 ["a" - ("a" - x)]^(3/2) "d"x` ......`[because int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x]`
= `int_0^"a"("a"^2 - 2"a"x + x^2)x^(3/2) "d"x`
= `int_0^"a"("a"^2x^(3/2) - 2"a"x^(5/2) + x^(7/2))"d"x`
= `"a"^2 int_0^"a" x^(3/2) "d"x - 2"a" int_0^"a" x^(5/2) "d"x + int_0^"a" x^(7/2) "d"x`
= `"a"^2[(x^(5/2))/(5/2)]_0^"a" - 2"a"[(x^(7/2))/(7/2)]_0^"a" + [(x^(9/2))/(9/2)]_0^"a"`
= `(2"a"^2)/5 [("a")^(5/2) - 0] - (4"a")/7 [("a")^(7/2) - 0] + 2/9 [("a")^(9/2) - 0]`
= `2/5"a"^(9/2) - 4/7"a"^(9/2) + 2/9"a"^(9/2)`
= `(2/5 - 4/7 + 2/9)"a"^(9/2)`
= `((126 - 180 + 70)/315)"a"^(9/2)`
∴ I = `16/315"a"^(9/2)`
RELATED QUESTIONS
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Solve the following.
`int_1^3 x^2 log x dx `
`int_a^b f(x) dx = int_a^b f (t) dt`
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`